Direct Demonstration of the Emergent Magnetism Resulting from the Multivalence Mn in a LaMnO3 Epitaxial Thin Film System

Atomically engineered oxide heterostructures provide a fertile ground for creating novel states. For example, a two-dimensional electron gas at the interface between two oxide insulators, giant thermoelectric Seebeck coefficient, emergent ferromagnetism from otherwise nonmagnetic components, and colossal ionic conductivity. Extensive research efforts reveal that oxygen deficiency or lattice strain play an important role in determining these unexpected properties. Herein, by studying the abrupt presence of robust ferromagnetism (up to 1.5 uB/Mn) in LaMnO3-based heterostructures, we find the multivalence states of Mn that play a decisive role in the emergence of ferromagnetism in the otherwise antiferromagnetic LaMnO3 thin films. Combining spatially resolved electron energy-loss spectroscopy, X-ray absorption spectroscopy and X-ray magnetic circular dichroism techniques, we determine unambiguously that the ferromagnetism results from a conventional Mn3+-O-Mn4+ double-exchange mechanism rather than an interfacial effect. In contrast, the magnetic dead layer of 5 unit cell in proximity to the interface is found to be accompanied with the accumulation of Mn2+ induced by electronic reconstruction. These findings provide a hitherto-unexplored multivalence state of Mn on the emergent magnetism in undoped manganite epitaxial thin films, such as LaMnO3 and BiMnO3, and shed new light on all-oxide spintronic devices.

[1]  F. Pan,et al.  Exchange bias in a single LaMnO 3 film induced by vertical electronic phase separation , 2014 .

[2]  J. Eckstein,et al.  Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices , 2014, Nature Communications.

[3]  A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3. , 2013, Nature communications.

[4]  Clarence Zener,et al.  Interaction Between the d Shells in the Transition Metals , 1951 .

[5]  J. Sulpizio,et al.  Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping. , 2015, Nature materials.

[6]  C. Jia,et al.  Direct Demonstration of a Magnetic Dead Layer Resulting from A‐Site Cation Inhomogeneity in a (La,Sr)MnO3 Epitaxial Film System , 2016 .

[7]  C. J. Li,et al.  Imaging and control of ferromagnetism in LaMnO3/SrTiO3 heterostructures , 2015, Science.

[8]  Jirong Sun,et al.  Charge ordering transition near the interface of the (011)-oriented La1−xSrxMnO3 (x∼1/8) films , 2008 .

[9]  E. Magnano,et al.  Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films , 2012, Nature Communications.

[10]  M. J. Lee,et al.  Interface ferromagnetism and orbital reconstruction in BiFeO3-La(0.7)Sr(0.3)MnO3 heterostructures. , 2010, Physical review letters.

[11]  Qinghua Zhang,et al.  Strain-induced modulation of oxygen vacancies and magnetic properties in La_0.5Sr_0.5MnO_3 thin films , 2016 .

[12]  Maria Varela,et al.  “Charge Leakage” at LaMnO3/SrTiO3 Interfaces , 2010, Advanced materials.

[13]  J. Goodenough,et al.  LaMnO 3+ δ Revisited , 1997 .

[14]  D. Feng,et al.  Tuning the dead-layer behavior of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} via interfacial engineering , 2013, 1301.4822.

[15]  J. M. D. Coey,et al.  Magnetic and electric “dead” layers in (La0.7Sr0.3)MnO3 thin films , 2001 .

[16]  Oxide interfaces: watch out for the lack of oxygen. , 2007, Nature materials.

[17]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[18]  Jinlan Wang,et al.  Scaling dopant states in a semiconducting nanostructure by chemically resolved electron energy-loss spectroscopy: a case study on Co-doped ZnO. , 2010, Journal of the American Chemical Society.

[19]  T. Grande,et al.  Strain-controlled oxygen vacancy formation and ordering in CaMnO3 , 2013, 1303.4749.

[20]  Peng Wang,et al.  High-resolution characterization of multiferroic heterojunction using aberration-corrected scanning transmission electron microscopy , 2017 .

[21]  N. Brookes,et al.  Spin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces. , 2010, Nature communications.

[22]  S. Bals,et al.  Defect Engineering in Oxide Heterostructures by Enhanced Oxygen Surface Exchange , 2010, 1008.1896.

[23]  P. Yu,et al.  Engineering magnetism at functional oxides interfaces: manganites and beyond , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  M. Raschke,et al.  Phase coexistence and electric-field control of toroidal order in oxide superlattices. , 2017, Nature materials.

[25]  K. Kosuda,et al.  Crystal and magnetic structures and properties of BiMnO(3+delta). , 2010, Journal of the American Chemical Society.

[26]  C. Nan,et al.  Manipulation of Magnetic Properties by Oxygen Vacancies in Multiferroic YMnO3 , 2016 .

[27]  M. Salamon,et al.  The physics of manganites: Structure and transport , 2001 .

[28]  Cheng Song,et al.  Restoring the magnetism of ultrathin LaMn O 3 films by surface symmetry engineering , 2016 .

[29]  N. Pryds,et al.  Suppressed carrier density for the patterned high mobility two-dimensional electron gas at γ-Al2O3/SrTiO3 heterointerfaces , 2017, 1706.09235.

[30]  C. Rao,et al.  Insulator–Metal Transitions, Giant Magnetoresistance, and Related Aspects of the Cation-Deficient $LaMnO_3$ Compositions $La_{1-\delta}MnO_3$ and $LaMn_{1-\delta'}O_3$ , 1996 .

[31]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[32]  Electrical Manipulation of Orbital Occupancy and Magnetic Anisotropy in Manganites , 2014, 1411.7128.

[33]  A. Sawa,et al.  Magnetic field tuning of interface electronic properties in manganite-titanate junctions , 2008 .

[34]  C. Cazorla Lattice effects on the formation of oxygen vacancies in perovskite thin films , 2016, 1612.06041.

[35]  Rong Zhang,et al.  Evidence of weak localization in quantum interference effects observed in epitaxial La0.7Sr0.3MnO3 ultrathin films , 2016, Scientific Reports.

[36]  Ho Nyung Lee,et al.  Growth control of stoichiometry in LaMnO3 epitaxial thin films by pulsed laser deposition , 2010 .

[37]  L. Tjeng,et al.  Local electronic structure and magnetic properties of LaMn0.5Co0.5O3 studied by x-ray absorption and magnetic circular dichroism spectroscopy dichroism spectroscopy , 2007, 0709.3243.

[38]  S. Dong,et al.  Appearance and disappearance of ferromagnetism in ultrathin LaMnO 3 on SrTiO 3 substrate: A viewpoint from first principles , 2017, 1711.11329.

[39]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[40]  H. Christen,et al.  Controlling the magnetic properties of LaMnO3 thin films on SrTiO3(100) by deposition in a O2/Ar gas mixture , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  A. Fert,et al.  High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. , 2007, Physical review letters.

[42]  M. Varela,et al.  Thickness dependence of the exchange bias in epitaxial manganite bilayers , 2008, 0804.2909.

[43]  Haoran Xu,et al.  All-oxide–based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal , 2017, Science.

[44]  P. Vullum,et al.  Structural phases driven by oxygen vacancies at the La0.7Sr0.3MnO3/SrTiO3 hetero-interface , 2015 .

[45]  D. Ralph,et al.  Interface-Induced Phenomena in Magnetism. , 2016, Reviews of modern physics.

[46]  A. Bleloch,et al.  Effects of thickness on the cation segregation in epitaxial (001) and (110) La2/3Ca1/3MnO3 thin films , 2009 .

[47]  E. Cordfunke,et al.  The Defect Chemistry of LaMnO3±δ: 4. Defect Model for LaMnO3+δ , 1994 .

[48]  Z. Dong,et al.  Interface and Surface Cation Stoichiometry Modified by Oxygen Vacancies in Epitaxial Manganite Films , 2012 .

[49]  D. Muller,et al.  Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal–insulator transition , 2014, Nature Communications.

[50]  J. Kilner Ionic conductors: feel the strain. , 2008, Nature materials.

[51]  Peter Abbamonte,et al.  Probing Interfacial Electronic Structures in Atomic Layer LaMnO3 and SrTiO3 Superlattices , 2010, Advanced materials.

[52]  Jose H. Garcia,et al.  Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO 3 + δ , 1997 .

[53]  C. J. Li,et al.  Emergent nanoscale superparamagnetism at oxide interfaces , 2015, Nature Communications.