Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin

CyaA is crucial for colonization by Bordetella pertussis, the etiologic agent of whooping cough. Here we report crystal structures of the adenylyl cyclase domain (ACD) of CyaA with the C‐terminal domain of calmodulin. Four discrete regions of CyaA bind calcium‐loaded calmodulin with a large buried contact surface. Of those, a tryptophan residue (W242) at an α‐helix of CyaA makes extensive contacts with the calcium‐induced, hydrophobic pocket of calmodulin. Mutagenic analyses show that all four regions of CyaA contribute to calmodulin binding and the calmodulin‐induced conformational change of CyaA is crucial for catalytic activation. A crystal structure of CyaA–calmodulin with adefovir diphosphate, the metabolite of an approved antiviral drug, reveals the location of catalytic site of CyaA and how adefovir diphosphate tightly binds CyaA. The ACD of CyaA shares a similar structure and mechanism of activation with anthrax edema factor (EF). However, the interactions of CyaA with calmodulin completely diverge from those of EF. This provides molecular details of how two structurally homologous bacterial toxins evolved divergently to bind calmodulin, an evolutionarily conserved calcium sensor.

[1]  J. Florián,et al.  Calcium‐independent calmodulin binding and two‐metal–ion catalytic mechanism of anthrax edema factor , 2005, The EMBO journal.

[2]  T. Nakatsu,et al.  Crystal structure of a myristoylated CAP‐23/NAP‐22 N‐terminal domain complexed with Ca2+/calmodulin , 2004, The EMBO journal.

[3]  W. Chazin,et al.  Target selectivity in EF-hand calcium binding proteins. , 2004, Biochimica et biophysica acta.

[4]  S. Sprang,et al.  Origin of asymmetry in adenylyl cyclases: structures of Mycobacterium tuberculosis Rv1900c , 2005, The EMBO journal.

[5]  E. Hanski,et al.  Adenylate cyclase toxin from Bordetella pertussis. The relationship between induction of cAMP and hemolysis. , 1991, The Journal of biological chemistry.

[6]  J. Adelman,et al.  Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin , 2001, Nature.

[7]  A. Danchin,et al.  Functional consequences of single amino acid substitutions in calmodulin‐activated adenylate cyclase of Bordetella pertussis. , 1991, The EMBO journal.

[8]  A. Bohm,et al.  An Extended Conformation of Calmodulin Induces Interactions between the Structural Domains of Adenylyl Cyclase from Bacillus anthracis to Promote Catalysis* , 2000, The Journal of Biological Chemistry.

[9]  R. Wilkinson,et al.  Recognition of Mycobacterial Antigens Delivered by Genetically Detoxified Bordetella pertussis Adenylate Cyclase by T Cells from Cattle with Bovine Tuberculosis , 2004, Infection and Immunity.

[10]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[11]  D. Ladant,et al.  Bordetella pertussis adenylate cyclase: a toxin with multiple talents. , 1993, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[12]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[13]  F A Quiocho,et al.  Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. , 1992, Science.

[14]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .

[15]  P. Schuck,et al.  Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. , 1997, Annual review of biophysics and biomolecular structure.

[16]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[17]  L. Abrami,et al.  Anthrax toxin: the long and winding road that leads to the kill. , 2005, Trends in microbiology.

[18]  F. Findeisen,et al.  The Structure of a pH-Sensing Mycobacterial Adenylyl Cyclase Holoenzyme , 2005, Science.

[19]  C. Gibbs,et al.  Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  N. Carbonetti,et al.  Pertussis Toxin and Adenylate Cyclase Toxin Provide a One-Two Punch for Establishment of Bordetella pertussis Infection of the Respiratory Tract , 2005, Infection and Immunity.

[21]  J. Miller,et al.  Mechanisms of Bordetella pathogenesis. , 2001, Frontiers in bioscience : a journal and virtual library.

[22]  J. Schultz,et al.  The class III adenylyl cyclases: multi-purpose signalling modules. , 2003, Cellular signalling.

[23]  Mitsuhiko Ikura,et al.  Structural basis for simultaneous binding of two carboxy-terminal peptides of plant glutamate decarboxylase to calmodulin. , 2003, Journal of molecular biology.

[24]  M. Berridge,et al.  Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature reviews. Molecular cell biology.

[25]  H. Wolfson,et al.  Shape complementarity at protein–protein interfaces , 1994, Biopolymers.

[26]  Mitsuhiko Ikura,et al.  Calmodulin in Action Diversity in Target Recognition and Activation Mechanisms , 2002, Cell.

[27]  Milan Mrksich,et al.  Physiological calcium concentrations regulate calmodulin binding and catalysis of adenylyl cyclase exotoxins , 2002, The EMBO journal.

[28]  H. Sakamoto,et al.  Insight into the activation mechanism of Bordetella pertussis adenylate cyclase by calmodulin using fluorescence spectroscopy. , 2004, European journal of biochemistry.

[29]  D. Ladant,et al.  A bacterial two-hybrid system based on a reconstituted signal transduction pathway. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Thomas,et al.  Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. , 1999, Trends in cell biology.

[31]  M Ikura,et al.  Molecular and structural basis of target recognition by calmodulin. , 1995, Annual review of biophysics and biomolecular structure.

[32]  A. Bohm,et al.  Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin , 2002, Nature.

[33]  R. Edwards,et al.  A Glimpse into the Expanded Genome Content of Vibrio cholerae through Identification of Genes Present in Environmental Strains , 2005, Journal of bacteriology.

[34]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[35]  A. Danchin,et al.  Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site‐directed mutagenesis. , 1989, The EMBO journal.

[36]  A. Danchin,et al.  The role of histidine 63 in the catalytic mechanism of Bordetella pertussis adenylate cyclase. , 1992, The Journal of biological chemistry.

[37]  R Miller,et al.  Optimizing Shake-and-Bake for proteins. , 1999, Acta crystallographica. Section D, Biological crystallography.

[38]  Hao Wu,et al.  Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment , 2005, Nature Structural &Molecular Biology.

[39]  J. Barbieri,et al.  ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Hiroki Nagai,et al.  A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Ad Bax,et al.  Calcium Dependence of the Interaction between Calmodulin and Anthrax Edema Factor* , 2003, Journal of Biological Chemistry.

[42]  A. Danchin,et al.  Cooperative phenomena in binding and activation of Bordetella pertussis adenylate cyclase by calmodulin. , 1993, The Journal of biological chemistry.

[43]  G. Cornelis,et al.  Translocation of a hybrid YopE‐adenylate cyclase from Yersinia enterocolitica into HeLa cells , 1994, Molecular microbiology.

[44]  D. Ladant,et al.  Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. , 1988, The Journal of biological chemistry.

[45]  S R Sprang,et al.  Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. , 1997 .

[46]  Gérard Bricogne,et al.  SHARP: maximum-likelihood refinement of heavy-atom parameters in the MIR and MAD methods , 1996 .

[47]  Bertrand Friguet,et al.  Essential Role of Methionine Residues in Calmodulin Binding to Bordetella pertussis Adenylate Cyclase, as Probed by Selective Oxidation and Repair by the Peptide Methionine Sulfoxide Reductases* , 2004, Journal of Biological Chemistry.

[48]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[49]  T. Nakatsu,et al.  Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin , 2003, Nature Structural Biology.

[50]  A. Gronenborn,et al.  Solution structure of a calmodulin-target peptide complex by multidimensional NMR. , 1994, Science.

[51]  P. Ricciardi-Castagnoli,et al.  The Adenylate Cyclase Toxin of Bordetella pertussis Binds to Target Cells via the αMβ2 Integrin (Cd11b/Cd18) , 2001, The Journal of experimental medicine.

[52]  A. Danchin,et al.  Binding of 3'-anthraniloyl-2'-deoxy-ATP to calmodulin-activated adenylate cyclase from Bordetella pertussis and Bacillus anthracis. , 1990, The Journal of biological chemistry.