Scenario Approximation of Robust and Chance-Constrained Programs

We consider scenario approximation of problems given by the optimization of a function over a constraint that is too difficult to be handled but can be efficiently approximated by a finite collection of constraints corresponding to alternative scenarios. The covered programs include min-max games, and semi-infinite, robust and chance-constrained programming problems. We prove convergence of the solutions of the approximated programs to the given ones, using mainly epigraphical convergence, a kind of variational convergence that has demonstrated to be a valuable tool in optimization problems.

[1]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[2]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[3]  G. Calafiore,et al.  Probabilistic and Randomized Methods for Design under Uncertainty , 2006 .

[4]  R. Gray,et al.  Asymptotically Mean Stationary Measures , 1980 .

[5]  Benjamin Van Roy,et al.  On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming , 2004, Math. Oper. Res..

[6]  Harald Niederreiter,et al.  Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .

[7]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[8]  P. L’Ecuyer,et al.  Random Number Generation and Quasi-Monte Carlo† , 2015 .

[9]  Patrick L. Combettes,et al.  Strong Convergence of Block-Iterative Outer Approximation Methods for Convex Optimization , 2000, SIAM J. Control. Optim..

[10]  Peter Kall,et al.  Stochastic Programming , 1995 .

[11]  H. Attouch Variational convergence for functions and operators , 1984 .

[12]  Ian Barrodale,et al.  Algorithm 495: Solution of an Overdetermined System of Linear Equations in the Chebychev Norm [F4] , 1975, TOMS.

[13]  N. Bingham EMPIRICAL PROCESSES WITH APPLICATIONS TO STATISTICS (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[14]  J. Steele Empirical Discrepancies and Subadditive Processes , 1978 .

[15]  James R. Luedtke,et al.  A Sample Approximation Approach for Optimization with Probabilistic Constraints , 2008, SIAM J. Optim..

[16]  R. Reemtsen Some outer approximation methods for semi-infinite optimization problems , 1994 .

[17]  H. Attouch,et al.  Variational Convergence for Functions and Operators (Applicable Mathematics Series) , 1984 .

[18]  Berç Rustem,et al.  Semi-Infinite Programming and Applications to Minimax Problems , 2003, Ann. Oper. Res..

[19]  Marco C. Campi,et al.  Decision Making in an Uncertain Environment: the Scenario based Optimization Approach , 2004 .

[20]  C. Choirat,et al.  Approximation of Stochastic Programming Problems , 2006 .

[21]  L. Devroye Laws of the Iterated Logarithm for Order Statistics of Uniform Spacings , 1981 .

[22]  G. Redaelli Convergence problems in stochastic programming models with probabilistic constraints , 1998 .

[23]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[24]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[25]  A. Nemirovski,et al.  Scenario Approximations of Chance Constraints , 2006 .

[26]  A. Charnes,et al.  Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil , 1958 .

[27]  J. Martínez-Legaz,et al.  Generalized Convexity, Generalized Monotonicity: Recent Results , 2011 .

[28]  Rembert Reemtsen Semi-infinite Programming: Discretization Methods , 2009, Encyclopedia of Optimization.

[29]  D. Pollard,et al.  GLIVENKO-CANTELLI THEOREMS FOR CLASSES OF CONVEX SETS , 1979 .

[30]  Ilya Molchanov,et al.  A Limit Theorem for Solutions of Inequalities , 1998 .

[31]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[32]  Georg Still,et al.  Discretization in semi-infinite programming: the rate of convergence , 2001, Math. Program..

[33]  C. Choirat,et al.  A FUNCTIONAL VERSION OF THE BIRKHOFF ERGODIC THEOREM FOR A NORMAL INTEGRAND: A VARIATIONAL APPROACH , 2003 .

[34]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[35]  Georg Still,et al.  Generalized semi-infinite programming: Theory and methods , 1999, Eur. J. Oper. Res..

[36]  E. Polak On the mathematical foundations of nondifferentiable optimization in engineering design , 1987 .

[37]  E. Cheney Introduction to approximation theory , 1966 .

[38]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[39]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[40]  Teemu Pennanen,et al.  Epi-convergent discretizations of stochastic programs via integration quadratures , 2005, Numerische Mathematik.

[41]  Roger J.-B. Wets,et al.  A characterization of epi-convergence in terms of convergence of level sets , 1992 .

[42]  M.C. Campi,et al.  Robust convex programs: randomized solutions and applications in control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[43]  René Henrion,et al.  Metric regularity and quantitative stability in stochastic programs with probabilistic constraints , 1999, Math. Program..

[44]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[45]  Alexander Shapiro,et al.  Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications , 2009, J. Optimization Theory and Applications.

[46]  J K Sengupta,et al.  STOCHASTIC LINEAR PROGRAMMING WITH CHANCE CONSTRAINTS , 1970 .

[47]  Abraham Charnes,et al.  Chance Constraints and Normal Deviates , 1962 .

[48]  Wm. Orchard-Hays,et al.  Evolution of Linear Programming Computing Techniques , 1958 .

[49]  A. Nobel A Counterexample Concerning Uniform Ergodic Theorems for a Class of Functions , 1995 .

[50]  P. V. Rao,et al.  Distribution-Free Approximations for Chance Constraints , 1974, Oper. Res..

[51]  R. Reemtsen,et al.  Discretization methods for the solution of semi-infinite programming problems , 1991 .

[52]  J. Mulvey,et al.  Making a case for robust optimization models , 1997 .

[53]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[54]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[55]  Roger J.-B. Wets,et al.  Stochastic Programs with Chance Constraints: Generalized Convexity and Approximation Issues , 1998 .

[56]  Georg J. Still,et al.  Generalized semi-infinite programming: numerical aspects , 2001 .

[57]  R. Jagannathan,et al.  Chance-Constrained Programming with Joint Constraints , 1974, Oper. Res..

[58]  P. J. Huber The 1972 Wald Lecture Robust Statistics: A Review , 1972 .