Accuracy and diversity-aware multi-objective approach for random forest construction

[1]  Daniel A. Jacobson,et al.  Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data , 2022, Computational and structural biotechnology journal.

[2]  G. Choi,et al.  A novel improved random forest for text classification using feature ranking and optimal number of trees , 2022, J. King Saud Univ. Comput. Inf. Sci..

[3]  Zhiqiang Ge,et al.  Dynamic ensemble selection based improved random forests for fault classification in industrial processes , 2022, IFAC J. Syst. Control..

[4]  Abdelaziz Amara Korba,et al.  Fog Computing-Based Intrusion Detection Architecture to Protect IoT Networks , 2022, Wireless Personal Communications.

[5]  Shu-Tao Xia,et al.  Multinomial random forest , 2022, Pattern Recognit..

[6]  M. A. Ganaie,et al.  Oblique and rotation double random forest , 2021, Neural Networks.

[7]  Quoc-Dung Ngo,et al.  A collaborative approach to early detection of IoT Botnet , 2021, Comput. Electr. Eng..

[8]  Guan Gui,et al.  Federated Deep Learning for Zero-Day Botnet Attack Detection in IoT-Edge Devices , 2021, IEEE Internet of Things Journal.

[9]  Nour El Islem Karabadji,et al.  A data sampling and attribute selection strategy for improving decision tree construction , 2019, Expert Syst. Appl..

[10]  Victor Guilherme Turrisi da Costa,et al.  IoTDS: A One-Class Classification Approach to Detect Botnets in Internet of Things Devices , 2019, Sensors.

[11]  André C. Drummond,et al.  A Survey of Random Forest Based Methods for Intrusion Detection Systems , 2018, ACM Comput. Surv..

[12]  Md Zahidul Islam,et al.  Forest PA: Constructing a decision forest by penalizing attributes used in previous trees , 2017, Expert Syst. Appl..

[13]  Nour El Islem Karabadji,et al.  An evolutionary scheme for decision tree construction , 2017, Knowl. Based Syst..

[14]  Md Zahidul Islam,et al.  Optimizing the number of trees in a decision forest to discover a subforest with high ensemble accuracy using a genetic algorithm , 2016, Knowl. Based Syst..

[15]  Erwan Scornet,et al.  A random forest guided tour , 2015, TEST.

[16]  Md Zahidul Islam,et al.  Software defect prediction using a cost sensitive decision forest and voting, and a potential solution to the class imbalance problem , 2015, Inf. Syst..

[17]  Mohamed Medhat Gaber,et al.  GARF: Towards Self-optimised Random Forests , 2012, ICONIP.

[18]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..

[19]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[20]  L. Breiman Random Forests , 2001, Encyclopedia of Machine Learning and Data Mining.

[21]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[22]  Md Zahidul Islam,et al.  BDF: A new decision forest algorithm , 2021, Inf. Sci..

[23]  Niva Mohapatra,et al.  Optimization of the Random Forest Algorithm , 2020 .

[24]  Nour El Islem Karabadji,et al.  Evolutionary mining of skyline clusters of attributed graph data , 2020, Inf. Sci..

[25]  Lior Rokach,et al.  Decision forest: Twenty years of research , 2016, Inf. Fusion.