Effect of intra- and extragranular addition of highly porous tribasic calcium phosphate on properties of immediate release acyclovir formulation – Comparison with commercial tablets using compendial and biorelevant dissolution methods

[1]  Parind Mahendrakumar Desai,et al.  Review of Disintegrants and the Disintegration Phenomena. , 2016, Journal of pharmaceutical sciences.

[2]  Kishore Kumar Hotha,et al.  Drug-Excipient Interactions: Case Studies and Overview of Drug Degradation Pathways , 2016 .

[3]  P. Langguth,et al.  Oral Solid Dosage Form Disintegration Testing - The Forgotten Test. , 2015, Journal of pharmaceutical sciences.

[4]  Mario A. González,et al.  The Effect of Excipients on the Permeability of BCS Class III Compounds and Implications for Biowaivers , 2015, Pharmaceutical Research.

[5]  Juraj Sibik,et al.  The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants , 2015, Journal of pharmaceutical sciences.

[6]  Peter Kleinebudde,et al.  A critical review on tablet disintegration , 2015, Pharmaceutical development and technology.

[7]  K. Kamiński,et al.  The Improvement of the Dissolution Rate of Ziprasidone Free Base from Solid Oral Formulations , 2015, AAPS PharmSciTech.

[8]  W. Weitschies,et al.  A biorelevant dissolution stress test device – background and experiences , 2010, Expert opinion on drug delivery.

[9]  Werner Weitschies,et al.  Investigation of dissolution behavior of diclofenac sodium extended release formulations under standard and biorelevant test conditions , 2010, Drug development and industrial pharmacy.

[10]  M. Roberts,et al.  Compatibility studies of acyclovir and lactose in physical mixtures and commercial tablets. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[11]  Bertil Abrahamsson,et al.  Comparison of dissolution profiles obtained from nifedipine extended release once a day products using different dissolution test apparatuses. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[12]  M. Khan,et al.  Disintegration of Highly Soluble Immediate Release Tablets: A Surrogate for Dissolution , 2009, AAPS PharmSciTech.

[13]  D. Barends,et al.  Biowaiver monographs for immediate release solid oral dosage forms: aciclovir. , 2008, Journal of pharmaceutical sciences.

[14]  Clive G. Wilson,et al.  Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[15]  D. Barends,et al.  Biowaiver monographs for immediate release solid oral dosage forms: ethambutol dihydrochloride. , 2008, Journal of pharmaceutical sciences.

[16]  D M Barends,et al.  Biowaiver monographs for immediate release solid oral dosage forms: ranitidine hydrochloride. , 2005, Journal of pharmaceutical sciences.

[17]  D. Barends,et al.  Biowaiver monographs for immediate release solid oral dosage forms based on biopharmaceutics classification system (BCS) literature data: verapamil hydrochloride, propranolol hydrochloride, and atenolol. , 2004, Journal of pharmaceutical sciences.

[18]  B. Guglielmo,et al.  Pharmacokinetics of valaciclovir. , 2004, The Journal of antimicrobial chemotherapy.

[19]  Sarfaraz K. Niazi Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System , 2004, Handbook of Pharmaceutical Manufacturing Formulations, Third Edition.

[20]  Michael Levin Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System , 2001 .

[21]  G L Amidon,et al.  A compartmental absorption and transit model for estimating oral drug absorption. , 1999, International journal of pharmaceutics.

[22]  M. Georgarakis,et al.  Acyclovir serum concentrations following peroral administration of magnetic depot tablets and the influence of extracorporal magnets to control gastrointestinal transit. , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[23]  Lawrence X. Yu,et al.  Compartmental transit and dispersion model analysis of small intestinal transit flow in humans , 1996 .

[24]  M S Gordon,et al.  Effect of the mode of super disintegrant incorporation on dissolution in wet granulated tablets. , 1993, Journal of pharmaceutical sciences.

[25]  Raoul Kopelman,et al.  Fractal Reaction Kinetics , 1988, Science.

[26]  L. Lewis,et al.  Human gastrointestinal absorption of acyclovir from tablet duodenal infusion and sipped solution. , 1986, British journal of clinical pharmacology.

[27]  G. K. Bolhuis,et al.  Improvement by super disintegrants of the properties of tablets containing lactose, prepared by wet granulation , 1983, Pharmaceutisch Weekblad.

[28]  O. Laskin Clinical Pharmacokinetics of Acyclovir , 1983, Clinical pharmacokinetics.

[29]  E. Shotton,et al.  The effect of intra‐ and extragranular maize starch on the disintegration of compressed tablets , 1972, The Journal of pharmacy and pharmacology.

[30]  J. Gajdziok Superdisintegrants used in pharmaceutical technology. , 2019, Ceska a Slovenska farmacie : casopis Ceske farmaceuticke spolecnosti a Slovenske farmaceuticke spolecnosti.

[31]  D. Zakowiecki,et al.  Beyond just a filler – application of calcium phosphates in direct compression formulations-BPD , 2018 .

[32]  S. Jain,et al.  APPROACHES FOR ENHANCING THE BIOAVAILABILITY OF ACYCLOVIR: A CRITICAL REVIEW , 2013 .

[33]  Y. Qiu,et al.  Understanding Drug Properties in Formulation and Process Design of Solid Oral Products , 2010 .

[34]  Sarsvatkumar Patel,et al.  Compression physics in the formulation development of tablets. , 2006, Critical reviews in therapeutic drug carrier systems.

[35]  L L Augsburger,et al.  The role of intra- and extragranular microcrystalline cellulose in tablet dissolution. , 1996, Pharmaceutical development and technology.