Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review.

Poly(lactic acid) (PLA), so far, is the most extensively researched and utilized biodegradable aliphatic polyester in human history. Due to its merits, PLA is a leading biomaterial for numerous applications in medicine as well as in industry replacing conventional petrochemical-based polymers. The main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements. This review also summarizes variations in these properties during PLA processing (i.e. thermal degradation and recyclability), biodegradation, packaging and sterilization, and aging (i.e. weathering and hygrothermal). In addition, we discuss up-to-date strategies for PLA properties improvements including components and plasticizer blending, nucleation agent addition, and PLA modifications and nanoformulations. Incorporating better understanding of the role of these properties with available improvement strategies is the key for successful utilization of PLA and its copolymers/composites/blends to maximize their fit with worldwide application needs.

[1]  B. Wesslén,et al.  Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging , 2003 .

[2]  J. Vacanti,et al.  Tissue engineering : Frontiers in biotechnology , 1993 .

[3]  Y. Inoue,et al.  Roles of Physical Aging on Crystallization Kinetics and Induction Period of Poly(l-lactide) , 2008 .

[4]  J. Kolstad Crystallization kinetics of poly(L‐lactide‐co‐meso‐lactide) , 1996 .

[5]  Ralph Müller,et al.  Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[6]  A. Maazouz,et al.  Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy , 2012 .

[7]  Hiroshi Mitomo,et al.  Properties of crosslinked polylactides (PLLA & PDLA) by radiation and its biodegradability , 2007 .

[8]  M. Day,et al.  A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites , 2006 .

[9]  M. L. Lorenzo Crystallization behavior of poly(l-lactic acid) , 2005 .

[10]  A. Dekel,et al.  Prospective clinical study of a novel biodegradable sub-acromial spacer in treatment of massive irreparable rotator cuff tears , 2013, European Journal of Orthopaedic Surgery & Traumatology.

[11]  Masami Okamoto,et al.  Foam processing and cellular structure of polylactide-based nanocomposites , 2006 .

[12]  Xuesi Chen,et al.  Stabilization of poly(lactic acid) by polycarbodiimide , 2008 .

[13]  A. Hiltner,et al.  Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol) , 2003 .

[14]  Mohammad S. Islam,et al.  Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly(lactic acid) (PLA) composites , 2010 .

[15]  Koji Nakane,et al.  Poly(lactide) nanofibers produced by a melt‐electrospinning system with a laser melting device , 2007 .

[16]  H. Tsuji,et al.  In Vitro Hydrolysis of Blends from Enantiomeric Poly(lactide)s. 2. Well-Stereocomplexed Fiber and Film. , 2001 .

[17]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[18]  S. Ray,et al.  Crystallization Behavior and Morphology of Biodegradable Polylactide/ Layered Silicate Nanocomposite , 2003 .

[19]  Long Yu,et al.  Polymer blends and composites from renewable resources , 2006 .

[20]  J. Runt,et al.  Crystallization and Microstructure of Poly(l-lactide-co-meso-lactide) Copolymers , 1998 .

[21]  Lucia Sansone,et al.  Processing and shelf life issues of selected food packaging materials and structures from renewable resources , 2011 .

[22]  Marc A. Hillmyer,et al.  Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide , 2001 .

[23]  T. Deberardino,et al.  In vivo comparison of a metal versus a biodegradable suture anchor. , 2004, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[24]  R. Gross,et al.  Citrate esters as plasticizers for poly(lactic acid) , 1997 .

[25]  E. Wintermantel,et al.  Thermal and mechanical properties of plasticized poly(L‐lactic acid) , 2003 .

[26]  H. Gao,et al.  Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)-beta-cyclodextrin and its properties as the new carrier of protein delivery system. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[27]  Jay Singh,et al.  Performance Evaluation of PLA against Existing PET and PS Containers , 2006 .

[28]  Jagjit Singh,et al.  Evaluation of oriented poly(lactide) polymers vs. existing PET and oriented PS for fresh food service containers , 2005 .

[29]  S. Santavirta,et al.  Bioabsorbable Miniplating Versus Metallic Fixation for Metacarpal Fractures , 2003, Clinical orthopaedics and related research.

[30]  Stephen P. McCarthy,et al.  Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate) , 1996 .

[31]  João S. Soares,et al.  Constitutive Framework for Biodegradable Polymers with Applications to Biodegradable Stents , 2008, ASAIO journal.

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  Y. Levy,et al.  A novel device for protecting rectum during prostate cancer irradiation: in vivo data on a large mammal model. , 2009, The Journal of urology.

[34]  Philippe Katz,et al.  Polylactic acid implants (New-Fill)® to correct facial lipoatrophy in HIV-infected patients: results of the open-label study VEGA , 2003, AIDS.

[35]  Kristiina Oksman,et al.  Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC) , 2005 .

[36]  Michael J. Bevis,et al.  Improvement of the mechanical properties of poly(D,L-lactide) by orientation , 2002 .

[37]  Xiaoqing Zhang,et al.  Morphological behaviour of poly(lactic acid) during hydrolytic degradation , 2008 .

[38]  L. Avérous,et al.  Poly(lactic acid): plasticization and properties of biodegradable multiphase systems , 2001 .

[39]  D. Kaplan,et al.  Biopolymers from Renewable Resources , 1998 .

[40]  S. Ray,et al.  Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide , 2004 .

[41]  L. Lavery,et al.  Mechanical characteristics of poly-L-lactic acid absorbable screws and stainless steel screws in basilar osteotomies of the first metatarsal. , 1994, Journal of Foot and Ankle Surgery.

[42]  L. Lim,et al.  Processing technologies for poly(lactic acid) , 2008 .

[43]  H. Tsuji,et al.  Poly(L‐lactide). X. Enhanced surface hydrophilicity and chain‐scission mechanisms of poly(L‐lactide) film in enzymatic, alkaline, and phosphate‐buffered solutions , 2003 .

[44]  J. Runt,et al.  Crystallization and Solid-State Structure of Random Polylactide Copolymers: Poly(l-lactide-co-d-lactide)s , 2001 .

[45]  Geoffrey W. Coates,et al.  Stereoselective ring‐opening polymerization of rac‐lactide with a single‐site, racemic aluminum alkoxide catalyst: Synthesis of stereoblock poly(lactic acid) , 2000 .

[46]  Young Ha Kim,et al.  Improvement of flexural strengths of poly(L-lactic acid) by solid-state extrusion, 2: Extrusion through rectangular die , 2003 .

[47]  Paul Kiekens,et al.  Biopolymers: overview of several properties and consequences on their applications. , 2002 .

[48]  Hideto Tsuji,et al.  Photodegradation of biodegradable polyesters: A comprehensive study on poly(l-lactide) and poly(ɛ-caprolactone) , 2006 .

[49]  D. Colombini,et al.  Plasticization of poly(lactic acid) with oligomeric malonate esteramides: Dynamic mechanical and thermal film properties , 2005 .

[50]  Alain Bourmaud,et al.  Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid) , 2008 .

[51]  S. Hackbarth,et al.  Investigation of Polylactic Acid (PLA) Nanoparticles as Drug Delivery Systems for Local Dermatotherapy , 2009, Pharmaceutical Research.

[52]  M. Xanthos,et al.  Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides , 2009 .

[53]  H. Oyama Super-tough poly(lactic acid) materials : Reactive blending with ethylene copolymer , 2009 .

[54]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[55]  Yoshito Ikada,et al.  Thermal characterization of polylactides , 1988 .

[56]  J. Sarasua,et al.  Cracking in polylactide spherulites , 2005 .

[57]  Yoshito Ikada,et al.  Properties and morphology of poly(L-lactide). 4. Effects of structural parameters on long-term hydrolysis of poly(L-lactide) in phosphate-buffered solution , 2000 .

[58]  L. Claes,et al.  Resorbable polymer fibers for ligament augmentation. , 2001, Journal of biomedical materials research.

[59]  Y. Shirai,et al.  Thermal degradation behaviour of poly(lactic acid) stereocomplex , 2004 .

[60]  C. Bowman,et al.  Mechanical properties of hydrogels and their experimental determination. , 1996, Biomaterials.

[61]  S. Ray,et al.  New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties , 2003 .

[62]  R. Singh,et al.  An overview on the degradability of polymer nanocomposites , 2005 .

[63]  J. Lunt Large-scale production, properties and commercial applications of polylactic acid polymers , 1998 .

[64]  Ming Yang,et al.  Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate , 2006 .

[65]  X. Sun,et al.  Thermal and mechanical properties of poly(lactic acid)/starch/methylenediphenyl diisocyanate blending with triethyl citrate† , 2003 .

[66]  Rahul M. Rasal,et al.  Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization. , 2009, Journal of biomedical materials research. Part A.

[67]  Zhongze Gu,et al.  Electrochemical Study on Synergistic Effect of the Blending of Nano TiO2 and PLA Polymer on the Interaction of Antitumor Drug with DNA , 2006 .

[68]  Jae-Do Nam,et al.  Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. , 2005, Biomaterials.

[69]  Tianwei Tan,et al.  Studies on the oridonin-loaded poly(D,L-lactic acid) nanoparticles in vitro and in vivo. , 2007, International journal of biological macromolecules.

[70]  C. Laurencin,et al.  Biodegradable polymers as biomaterials , 2007 .

[71]  H. Masuoka,et al.  Pressure‐volume‐temperature behavior of polylactide, poly(butylene succinate), and poly(butylene succinate‐co‐adipate) , 2000 .

[72]  X. Sun,et al.  Properties of poly(lactic acid) blends with various starches as affected by physical aging , 2003 .

[73]  Yoshito Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactides) , 1987 .

[74]  Mahmoud Ahmadian,et al.  Design and evaluation of basic standard encryption algorithm modules using nanosized complementary metal–oxide–semiconductor–molecular circuits , 2006 .

[75]  Y. Doi,et al.  Thermal degradation of poly((R)-3-hydroxybutyrate), poly(e-caprolactone), and poly((S)-lactide) , 2002 .

[76]  Dirk W. Grijpma,et al.  (Co)polymers of L‐lactide, 2. Mechanical properties , 1994 .

[77]  D. Grijpma,et al.  High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties , 1996 .

[78]  Laurence W. McKeen,et al.  3 – Plastics Used in Medical Devices , 2014 .

[79]  Manjusri Misra,et al.  Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study , 2006 .

[80]  Yutaka Tokiwa,et al.  Biodegradability and biodegradation of poly(lactide) , 2006, Applied Microbiology and Biotechnology.

[81]  Shinji Ochi,et al.  Mechanical properties of kenaf fibers and kenaf/PLA composites , 2008 .

[82]  A. Janorkar,et al.  Poly(lactic acid) modifications , 2010 .

[83]  H. Daimon,et al.  Water vapor permeability of poly(lactide)s : Effects of molecular characteristics and crystallinity , 2006 .

[84]  H. Tsuji,et al.  Poly(l-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region , 2001 .

[85]  E. Giménez,et al.  Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications , 2006 .

[86]  Emma Strömberg,et al.  Assessing the MALDI-TOF MS sample preparation procedure to analyze the influence of thermo-oxidative ageing and thermo-mechanical degradation on poly (Lactide) , 2011 .

[87]  M. Yamaguchi,et al.  Miscibility, mechanical and thermal properties of poly(lactic acid)/polyester-diol blends , 2009 .

[88]  H. Hamada,et al.  Mechanical Property of Surface Modified Natural Fiber Reinforced PLA Biocomposites , 2013 .

[89]  Shigeo Asai,et al.  The radiation crosslinked films based on PLLA/PDLA stereocomplex after TAIC absorption in supercritical carbon dioxide , 2008 .

[90]  Yoshito Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films , 1999 .

[91]  Xuesi Chen,et al.  Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles , 2006 .

[92]  I. C. Mcneill,et al.  Polymer Chemistry , 1961, Nature.

[93]  Jin‐San Yoon,et al.  Reactive blending of poly(L-lactic acid) with poly(ethylene-co-vinyl alcohol) , 2005 .

[94]  A. Guinault,et al.  Oxidative degradation of polylactide (PLA) and its effects on physical and mechanical properties , 2014 .

[95]  Yu Jiugao,et al.  Study of the Properties of Plasticised Poly(Lactic Acid) with Poly(1,3-Butylene Adipate) , 2008 .

[96]  Bin Yang,et al.  Isothermal cold crystallization kinetics of polylactide/nucleating agents , 2007 .

[97]  M. Bousmina,et al.  Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world , 2005 .

[98]  V. Vittoria,et al.  Potential perspectives of bio-nanocomposites for food packaging applications , 2007 .

[99]  H. Fritz,et al.  Filling of poly(lactic acid) with native starch , 1996 .

[100]  Rafael Gavara,et al.  Bioactive packaging: turning foods into healthier foods through biomaterials , 2006 .

[101]  S. Li,et al.  Further investigations on the hydrolytic degradation of poly (DL-lactide). , 1999, Biomaterials.

[102]  H. Fritz,et al.  Plasticizing polylactide—the effect of different plasticizers on the mechanical properties , 1999 .

[103]  E. Jabbari,et al.  Synthesis and characterization of bioresorbable in situ crosslinkable ultra low molecular weight poly(lactide) macromer , 2008, Journal of materials science. Materials in medicine.

[104]  K. Sakurai,et al.  Preparation of nanoparticles consisted of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) and their evaluation in vitro. , 1999, International journal of pharmaceutics.

[105]  Stephen P. McCarthy,et al.  Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol) , 1997 .

[106]  A. Yemenicioğlu,et al.  Antimicrobial and antioxidant activity of edible zein films incorporated with lysozyme, albumin proteins and disodium EDTA , 2007 .

[107]  S. Suzuki,et al.  Biodegradable Pin Fixation of Osteochondral Fragments of the Knee , 1996, Clinical orthopaedics and related research.

[108]  M. Pluta Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization , 2004 .

[109]  P. Seib,et al.  Blending of poly(lactic acid) and starches containing varying amylose content , 2003 .

[110]  E. Groves A Dissertation ON , 1928 .

[111]  Yongjin Li,et al.  Improvement in toughness of poly(L-lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene copolymer (ABS): Morphology and properties , 2009 .

[112]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[113]  A. Błędzki,et al.  Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres – A comparative study to PP , 2010 .

[114]  M. Kellomäki,et al.  Effect of filler type on the mechanical properties of self-reinforced polylactide–calcium phosphate composites , 2001, Journal of materials science. Materials in medicine.

[115]  Weihong Guo,et al.  The nucleation effect of modified carbon black on crystallization of poly(lactic acid) , 2010 .

[116]  Valentina Siracusa,et al.  Biodegradable polymers for food packaging: a review , 2008 .

[117]  Douglas E. Hirt,et al.  Modification of poly(lactic acid) films: Enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process , 2004 .

[118]  Nesli Sozer,et al.  Nanotechnology and its applications in the food sector. , 2009, Trends in biotechnology.

[119]  A. Södergård,et al.  Properties of lactic acid based polymers and their correlation with composition , 2002 .

[120]  Christophe Baley,et al.  Seawater ageing of flax/poly(lactic acid) biocomposites , 2009 .

[121]  J. Mano,et al.  Influence of melting conditions on the thermal behaviour of poly(l-lactic acid) , 2005 .

[122]  M. Pyda,et al.  Characterization of poly(lactic acid) by size exclusion chromatography, differential refractometry, light scattering and thermal analysis , 2006 .

[123]  Andrew G. Glen,et al.  APPL , 2001 .

[124]  Hengxing Yu,et al.  Modeling of poly(L‐lactide) thermal degradation: Theoretical prediction of molecular weight and polydispersity index , 2003 .

[125]  B. Wesslén,et al.  Film Extrusion and Film Weldability of Poly(lactic acid) Plasticized with Triacetine and Tributyl Citrate. , 2003 .

[126]  Luc Avérous,et al.  Nano-biocomposites: Biodegradable polyester/nanoclay systems , 2009 .

[127]  X. Sun,et al.  Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites , 2003 .

[128]  Yanmin Zhao,et al.  Biological evaluation of poly-l-lactic acid composite containing bioactive glass , 2010 .

[129]  Katrin Mackenzie,et al.  Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid) , 1996 .

[130]  Y. Ikada,et al.  Blends of aliphatic polyesters. I. Physical properties and morphologies of solution-cast blends from poly(DL-lactide) and poly(ε-caprolactone) , 1996 .

[131]  Sabu Thomas,et al.  Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites , 2002 .

[133]  Y. Grohens,et al.  Effect of natural weather on the structure and properties of polylactide/Cloisite 30B nanocomposites , 2010 .

[134]  A. McHugh,et al.  Modeling Melt Spinning of PLA Fibers , 2005 .

[135]  M. Huneault,et al.  Effect of nucleation and plasticization on the crystallization of poly(lactic acid) , 2007 .

[136]  Catia Bastioli,et al.  Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties , 1996 .

[137]  Young Ha Kim,et al.  Improvement of Flexural Strengths of Poly(L‐lactic acid) by Solid‐State Extrusion , 2001 .

[138]  R. Shishoo,et al.  Influence of processing parameters on the degradation of poly(L‐lactide) during extrusion , 2001 .

[139]  Luigi Nicolais,et al.  Reactively Modified Poly(lactic acid): Properties and Foam Processing , 2005 .

[140]  V. Coma,et al.  Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. , 2004, Chemosphere.

[141]  S. Ramakrishna,et al.  Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. , 2005, Biomaterials.

[142]  Samir Mitragotri,et al.  Physical approaches to biomaterial design. , 2009, Nature materials.

[143]  Ingo Alig,et al.  In-line monitoring of the thermal degradation of poly(l-lactic acid) during melt extrusion by UV–vis spectroscopy , 2008 .

[144]  S. Mccarthy,et al.  The Effect of Nanoclays on the Properties of PLLA-modified Polymers Part 1: Mechanical and Thermal Properties , 2006 .

[145]  Julio F. Davalos,et al.  Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures , 2007 .

[146]  H. Yamane,et al.  Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid) , 2003 .

[147]  A. Pandit,et al.  Liposomal gene delivery mediated by tissue-engineered scaffolds. , 2010, Trends in biotechnology.

[148]  M. Doxastakis,et al.  Controlled release systems based on poly(lactic acid). An in vitro and in vivo study , 2000, Journal of materials science. Materials in medicine.

[149]  Xuesi Chen,et al.  Ultrafine medicated fibers electrospun from W/O emulsions. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[150]  C. G. Pitt,et al.  The biodegradability of polyester blends. , 1990, Biomaterials.

[151]  Rubens Maciel Filho,et al.  Poly-lactic acid synthesis for application in biomedical devices - a review. , 2012, Biotechnology advances.

[152]  Simona Bronco,et al.  Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing , 2009 .

[153]  Yury Gogotsi,et al.  Fluorescent PLLA-nanodiamond composites for bone tissue engineering. , 2011, Biomaterials.

[154]  N. Yoshie,et al.  Higher-order structures and mechanical properties of stereocomplex-type poly(lactic acid) melt spun fibers , 2006 .

[155]  A. Södergård,et al.  Stabilization of poly(l-lactide) in the melt , 1994 .

[156]  A. Clarke,et al.  Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions. , 1999, Journal of food protection.

[157]  H. Tsuji,et al.  Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s , 2009 .

[158]  P. Gruber,et al.  Polylactic Acid Technology , 2000 .

[159]  N. Washburn,et al.  Structure and mechanical properties of poly(?,?-lactic acid)/poly(ɛ-caprolactone) blends , 2003 .

[160]  E H Burger,et al.  In vitro and in vivo degradation of bioabsorbable PLLA spinal fusion cages. , 2002, Journal of biomedical materials research.

[161]  S. Gogolewski,et al.  Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides. , 1997, Journal of biomedical materials research.

[162]  L. Matuana Solid state microcellular foamed poly(lactic acid): morphology and property characterization. , 2008, Bioresource technology.

[163]  Diego Mantovani,et al.  Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities , 2011, International journal of molecular sciences.

[164]  C. Nakafuku,et al.  Glass transition and mechanical properties of PLLA and PDLLA‐PGA copolymer blends , 2004 .

[165]  J. Dorgan,et al.  Optical Properties of Polylactides , 2006 .

[166]  Margaret Nichols Trans , 2015, De-centering queer theory.

[167]  M. Henley,et al.  Fixation with bioabsorbable screws for the treatment of fractures of the ankle. , 1994, The Journal of bone and joint surgery. American volume.

[168]  Bethany C Gross,et al.  Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. , 2014, Analytical chemistry.

[169]  D. Sawyer Bioprocessing – no longer a field of dreams , 2003 .

[170]  J. Sarasua,et al.  Crystallization and melting behavior of polylactides , 1998 .

[171]  H. Kricheldorf,et al.  Polylactones: 31. Sn(II)octoate-initiated polymerization of L-lactide: a mechanistic study , 1995 .

[172]  I. C. Mcneill,et al.  Degradation studies of some polyesters and polycarbonates—2. Polylactide: Degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer , 1985 .

[173]  J. Seppälä,et al.  The modification of lactic acid based poly(ester-urethane) by copolymerization , 1997 .

[174]  W C de Bruijn,et al.  Late degradation tissue response to poly(L-lactide) bone plates and screws. , 1995, Biomaterials.

[175]  H. Yano,et al.  The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites , 2009 .

[176]  R. P. John,et al.  An overview of the recent developments in polylactide (PLA) research. , 2010, Bioresource technology.

[177]  A. Hiltner,et al.  Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity , 2003 .

[178]  B. Wesslén,et al.  The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid) , 2002 .

[179]  J. Way,et al.  Gas permeation properties of poly(lactic acid) , 2001 .

[180]  M. Xanthos,et al.  A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids , 2009 .

[181]  P. Degée,et al.  Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation , 2005 .

[182]  G. Coates,et al.  Stereoselective Ring-Opening Polymerization of meso-Lactide: Synthesis of Syndiotactic Poly(lactic acid) , 1999 .

[183]  Leon P.B.M. Janssen,et al.  Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications , 2006 .

[184]  P. Dubois,et al.  New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol) (PEG) via reactive extrusion , 2011 .

[185]  Bikash Mohanty,et al.  Melt–solid polycondensation of lactic acid and its biodegradability , 2009 .

[186]  K. Reichert,et al.  Thermal degradation of poly-L-lactide-studies on kinetics, modelling and melt stabilisation , 1997 .

[187]  A. Yousefi,et al.  Three‐dimensional porous scaffolds at the crossroads of tissue engineering and cell‐based gene therapy , 2009, Journal of cellular biochemistry.

[188]  L. Palade,et al.  Polylactides: properties and prospects of an environmentally benign plastic from renewable resources , 2001 .

[189]  R. Joerger,et al.  Antimicrobial films for food applications: a quantitative analysis of their effectiveness , 2007 .

[190]  Danika M. Hayman,et al.  An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications , 2015, Annals of Biomedical Engineering.

[191]  Yong Xu,et al.  In vitro degradation of poly(caprolactone), poly(lactide) and their block copolymers: influence of composition, temperature and morphology , 1997 .

[192]  C. M. Agrawal,et al.  Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. , 1996, Biomaterials.

[193]  Angela M. Harris,et al.  Improving mechanical performance of injection molded PLA by controlling crystallinity , 2008 .

[194]  Jöns Hilborn,et al.  Poly(lactic acid) fiber : An overview , 2007 .

[195]  Jose M. Lagaron,et al.  Novel PET Nanocomposites of Interest in Food Packaging Applications and Comparative Barrier Performance With Biopolyester Nanocomposites , 2007 .

[196]  M Kellomäki,et al.  Bioabsorbable scaffolds for guided bone regeneration and generation. , 2000, Biomaterials.

[197]  Young Ha Kim,et al.  Synthesis and degradation of end‐group‐functionalized polylactide , 2001 .

[198]  S. Ray,et al.  New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials , 2003 .

[199]  S. Shalaby,et al.  Biomedical polymers : designed-to-degrade systems , 1994 .

[200]  Jörg Müssig,et al.  Impact and tensile properties of PLA/Cordenka and PLA/flax composites , 2008 .

[201]  J C Middleton,et al.  Synthetic biodegradable polymers as orthopedic devices. , 2000, Biomaterials.

[202]  L. Turng,et al.  Effects of nucleation and stereocomplex formation of poly(lactic acid) , 2016 .

[203]  Xiuzhi Sun,et al.  THERMAL AND MECHANICAL PROPERTIES OF POLY(LACTIC ACID) AND STARCH BLENDS WITH VARIOUS PLASTICIZERS , 2001 .

[204]  Linshu Liu,et al.  Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes , 2009 .

[205]  A. Domb,et al.  Biodegradable polymers derived from amino acids. , 2011, Macromolecular bioscience.

[206]  Yoshikazu Tanaka,et al.  Rapid controlled hydrolytic degradation of poly(l-lactic acid) by blending with poly(aspartic acid-co-l-lactide) , 2009 .

[207]  J. Rhim Potential Use of Biopolymer-based Nanocomposite Films in Food Packaging Applications , 2007 .

[208]  Guoping Chen,et al.  The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. , 2010, Biomaterials.

[209]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[210]  S. Ray,et al.  Biodegradable Polylactide and Its Nanocomposites: Opening a New Dimension for Plastics and Composites , 2003 .

[211]  Bernke J Papenburg,et al.  Development and analysis of multi-layer scaffolds for tissue engineering. , 2009, Biomaterials.

[212]  C. Dass,et al.  Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery , 2010, Peptides.

[213]  D. Cohn,et al.  Phase separation in poly(ethylene glycol)/poly(lactic acid) blends , 1988 .

[214]  M. L. Focarete,et al.  Miscibility and Mechanical Properties of Blends of (l)-Lactide Copolymers with Atactic Poly(3-hydroxybutyrate) , 2002 .

[215]  R. Suuronen,et al.  Biodegradable polylactide plates and screws in orthognathic surgery: technical note. , 1998, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[216]  R. Gurny,et al.  Biodegradable nanoparticles — From sustained release formulations to improved site specific drug delivery , 1996 .

[217]  I. Fishbein,et al.  Nanoparticulate delivery system of a tyrphostin for the treatment of restenosis. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[218]  C. Migliaresi,et al.  Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights : effect of thermal treatments , 1991 .

[219]  C. Hamm,et al.  Current status of bioresorbable scaffolds in the treatment of coronary artery disease. , 2014, Journal of the American College of Cardiology.

[220]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[221]  Gregory L. Baker,et al.  Stereoselective polymerization of a racemic monomer with a racemic catalyst: Direct preparation of the polylactic acid stereocomplex from racemic lactide , 2000 .

[222]  J. Runt,et al.  Effects of molecular architecture on two‐step, melt‐spun poly(lactic acid) fibers , 2002 .

[223]  C R Culberson,et al.  Parameters affecting cellular adhesion to polylactide films. , 1999, Journal of biomaterials science. Polymer edition.

[224]  K. Oksman,et al.  The Effect of Morphology and Chemical Characteristics of Cellulose Reinforcements on the Crystallinity of Polylactic Acid , 2006 .

[225]  P. Pagès,et al.  Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties , 2010 .