Wide-Field Infrared Survey Telescope–Astrophysics Focused Telescope Assets coronagraphic operations: lessons learned from the Hubble Space Telescope and the James Webb Space Telescope

Abstract. The coronagraphic instrument (CGI) currently proposed for the Wide-Field Infrared Survey Telescope–Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of their host star. While the design of this instrument is still in progress, this early stage of development is a particularly beneficial time to consider the operation of such an instrument. We review current or planned operations on the Hubble Space Telescope and the James Webb Space Telescope with a focus on which operational aspects will have relevance to the planned WFIRST-AFTA CGI. We identify five key aspects of operations that will require attention: (1) detector health and evolution, (2) wavefront control, (3) observing strategies/postprocessing, (4) astrometric precision/target acquisition, and (5) polarimetry. We make suggestions on a path forward for each of these items.

[1]  James R. Graham,et al.  HUBBLE SPACE TELESCOPE OPTICAL IMAGING OF THE ERODING DEBRIS DISK HD 61005 , 2009, 0910.5223.

[2]  David Wright,et al.  The JWST MIRI instrument concept , 2004, SPIE Astronomical Telescopes + Instrumentation.

[3]  E. Bergeron,et al.  Analysis, results and assessment of the NICMOS warm-up monitoring program , 1999 .

[4]  IPAC,et al.  A Candidate Substellar Companion to CD –33°7795 (TWA 5) , 1999 .

[5]  Bruce Macintosh,et al.  Detection and characterization of the atmospheres of the HR 8799 b and c planets with high contrast HST/WFC3 imaging , 2015 .

[6]  Dorothy A. Fraquelli,et al.  NICMOS Camera 2 Coronagraphic ACQs , 1998 .

[7]  J. Wisniewski,et al.  PROBING FOR EXOPLANETS HIDING IN DUSTY DEBRIS DISKS: DISK IMAGING, CHARACTERIZATION, AND EXPLORATION WITH HST/STIS MULTI-ROLL CORONAGRAPHY , 2014, 1406.7303.

[8]  Rodger I. Thompson NICMOS: Near Infrared Camera and Multi-Object Spectrometer , 1992 .

[9]  John E. Krist,et al.  Characterization and Subtraction of Well‐Exposed HST/NICMOS Camera 2 Point‐Spread Functions for a Survey of Very Low Mass Companions to Nearby Stars , 1998 .

[10]  Joseph J. Green,et al.  High contrast imaging with the JWST NIRCAM coronagraph , 2005, SPIE Optics + Photonics.

[11]  D. Defrère,et al.  Direct imaging of exoEarths embedded in clumpy debris disks , 2012, Other Conferences.

[12]  Subaru Telescope,et al.  IMAGING DISCOVERY OF THE DEBRIS DISK AROUND HIP 79977 , 2013, 1301.0625.

[13]  STScI,et al.  The NICMOS Polarimetric Calibration , 2006, astro-ph/0601541.

[14]  Glenn Schneider A Quick Study of Science Return from Direct Imaging Exoplanet Missions: Detection and Characterization of Circumstellar Material with an AFTA or EXO-C/S CGI , 2014 .

[15]  Vera Kozhurina-Platais,et al.  Updated CTE photometric correction for WFC and HRC , 2009 .

[16]  Paul Goudfrooij,et al.  Empirical Corrections for Charge Transfer Inefficiency and Associated Centroid Shifts for STIS CCD Observations , 2006, astro-ph/0608349.

[17]  Andrew D. Holland,et al.  EMCCDs for space applications , 2006, SPIE Astronomical Telescopes + Instrumentation.

[18]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[19]  C. Marois,et al.  Accurate Astrometry and Photometry of Saturated and Coronagraphic Point Spread Functions , 2006, astro-ph/0604256.

[20]  Edward S. Cheng,et al.  A comparison of charge transfer efficiency measurement techniques on proton damaged n-channel CCDs for the Hubble Space Telescope Wide-Field Camera 3 , 2001 .

[21]  George Miley,et al.  Advanced camera for the Hubble Space Telescope , 1996, Optics & Photonics.

[22]  John E. Krist,et al.  ACS coronagraphic flat fields , 2004 .

[23]  George H. Rieke,et al.  Simulations of JWST MIRI 4QPM coronagraphs operations and performances , 2014, Astronomical Telescopes and Instrumentation.

[24]  D. S. Acton,et al.  Integrated telescope model for the James Webb Space Telescope , 2012, Other Conferences.

[25]  M. Franx,et al.  Hubble Space Telescope ACS Multiband Coronagraphic Imaging of the Debris Disk around β Pictoris , 2006 .

[26]  Mark Clampin,et al.  Small-grid dithering strategy for improved coronagraphic performance with JWST , 2014, Astronomical Telescopes and Instrumentation.

[27]  B. Oppenheimer,et al.  Astrometry and Photometry with Coronagraphs , 2006, astro-ph/0606136.

[28]  Bernard J. Rauscher,et al.  Characterization of a photon counting EMCCD for space-based high contrast imaging spectroscopy of extrasolar planets , 2013, Astronomical Telescopes and Instrumentation.

[29]  Adam Amara,et al.  PYNPOINT: An image processing package for finding exoplanets , 2012, 1207.6637.

[30]  Aki Roberge,et al.  MAXIMIZING THE ExoEarth CANDIDATE YIELD FROM A FUTURE DIRECT IMAGING MISSION , 2014, 1409.5128.

[31]  Mark Clampin,et al.  A User’s Guide to Target Acquisition with STIS (Revision B) , 1997 .

[32]  D. Scott Acton,et al.  Demonstration of the James Webb Space Telescope commissioning on the JWST testbed telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[33]  C. Marois,et al.  A NEW ALGORITHM FOR POINT SPREAD FUNCTION SUBTRACTION IN HIGH-CONTRAST IMAGING: A DEMONSTRATION WITH ANGULAR DIFFERENTIAL IMAGING , 2007 .

[34]  Bruce Macintosh,et al.  Science yield estimation for AFTA coronagraphs , 2014, Astronomical Telescopes and Instrumentation.

[35]  Marc J. Kuchner,et al.  THE PSEUDO-ZODI PROBLEM FOR EDGE-ON PLANETARY SYSTEMS , 2015, 1502.02040.

[36]  Glenn Schneider,et al.  NICMOS Imaging of the HR 4796A Circumstellar Disk , 1999 .

[37]  Glenn Schneider,et al.  NICMOS Coronagraphic Calibration , 2004 .

[38]  John E. Krist End-to-end numerical modeling of AFTA coronagraphs , 2014, Astronomical Telescopes and Instrumentation.

[39]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[40]  Lee D. Feinberg,et al.  The Space Telescope Imaging Spectrograph Design , 1998 .

[41]  Mamadou N'Diaye,et al.  FIVE DEBRIS DISKS NEWLY REVEALED IN SCATTERED LIGHT FROM THE HUBBLE SPACE TELESCOPE NICMOS ARCHIVE , 2014, 1404.5614.

[42]  John Kirst,et al.  Long-term trends in the NICMOS Camera 2 obscuration pattern and aberrations , 1999 .

[43]  George Hartig,et al.  STIS Slit Wheel Repeatability , 1995 .

[44]  James R. Graham,et al.  The Signature of Primordial Grain Growth in the Polarized Light of the AU Microscopii Debris Disk , 2006 .

[45]  Glenn Schneider,et al.  NICMOS Mode-1 Coronagraphic Acquisition , 1999 .

[46]  Gene Serabyn,et al.  Phase-shifting Zernike interferometer wavefront sensor , 2011, Optical Engineering + Applications.

[47]  SETI Institute,et al.  Target Selection for SETI. I. A Catalog of Nearby Habitable Stellar Systems , 2003 .

[48]  Julien H. Girard,et al.  CONFIRMATION OF THE PLANET AROUND HD 95086 BY DIRECT IMAGING , 2013, 1310.7483.

[49]  G. Schneider,et al.  Analysis of Polarized Light with NICMOS , 2000 .

[50]  Jay Anderson,et al.  An Empirical Pixel-Based Correction for Imperfect CTE. I. HST’s Advanced Camera for Surveys , 2010, 1007.3987.

[51]  J. Scott Knight,et al.  Wavefront sensing and controls for the James Webb Space Telescope , 2012, Other Conferences.

[52]  Pierre Baudoz,et al.  Target Acquisition for MIRI Coronagraphs , 2008 .

[53]  Robert A. Brown TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS , 2015, 1501.02673.

[54]  Rodger I. Thompson,et al.  The Host Galaxy of the Broad Absorption Line QSO PG 1700+518 and Its Ring Galaxy Companion: NICMOS 1.6 Micron Imaging* , 1999 .

[55]  A. Nota,et al.  Faint Object Camera Instrument Handbook v.7 , 1996 .

[56]  Mark Clampin,et al.  Hubble Space Telescope Space Telescope Imaging Spectrograph Coronagraphic Imaging of the Herbig Ae Star AB Aurigae , 1999 .