Threshold error penalty for fault-tolerant quantum computation with nearest neighbor communication

The error threshold for fault-tolerant quantum computation with concatenated encoding of qubits is penalized by internal communication overhead. Many quantum computation proposals rely on nearest neighbor communication, which requires excess gate operations. For a qubit stripe with a width of L+1 physical qubits implementing L levels of concatenation, we find that the error threshold of 2.1/spl times/10/sup -5/ without any communication burden is reduced to 1.2/spl times/10/sup -7/ when gate errors are the dominant source of error. This /spl sim/175/spl times/ penalty in error threshold translates to an /spl sim/13/spl times/ penalty in the amplitude and timing of gate operation control pulses.

[1]  D. DiVincenzo,et al.  Local fault-tolerant quantum computation , 2004, quant-ph/0410047.

[2]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[3]  P. Oscar Boykin,et al.  Fault tolerant computation on ensemble quantum computers , 2004, International Conference on Dependable Systems and Networks, 2004.

[4]  Simon J. Devitt,et al.  Implementation of Shor's algorithm on a linear nearest neighbour qubit array , 2004, Quantum Inf. Comput..

[5]  Andrew M. Steane,et al.  Fault-tolerant logical gate networks for Calderbank-Shor-Steane codes , 2003, quant-ph/0311014.

[6]  Frederic T. Chong,et al.  Toward a scalable, silicon-based quantum computing architecture , 2003 .

[7]  A. Astashkin,et al.  Electron spin relaxation times of phosphorus donors in silicon , 2003, cond-mat/0303006.

[8]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[9]  Loss,et al.  Quantum dot as spin filter and spin memory , 2000, Physical review letters.

[10]  P. Oscar Boykin,et al.  On universal and fault-tolerant quantum computing: a novel basis and a new constructive proof of universality for Shor's basis , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[11]  G. Burkard,et al.  Noise of entangled electrons: Bunching and antibunching , 1999, cond-mat/9906071.

[12]  Kang L. Wang,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[13]  D. DiVincenzo,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999, quant-ph/9904096.

[14]  D. Gottesman Fault-tolerant quantum computation with local gates , 1999, quant-ph/9903099.

[15]  K. Moelmer,et al.  Error free quantum communication through noisy channels , 1998, quant-ph/9810042.

[16]  K. Mølmer,et al.  Error-free quantum communication through noisy channels , 1998 .

[17]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[18]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[19]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[20]  A. Steane Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1996, quant-ph/9611027.

[21]  M. Ben-Or,et al.  Fault-Tolerant Quantum Computation with Constant Error Rate , 1996, SIAM J. Comput..

[22]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[23]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[24]  E. Knill,et al.  Concatenated Quantum Codes , 1996, quant-ph/9608012.

[25]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.