Microstructure Analysis of the Limited Strain Hardening in Metastable β Titanium Alloy with Equiaxed Grain

[1]  W. Zeng,et al.  High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process , 2022, Materials Science and Engineering: A.

[2]  Junshi Zhang,et al.  Achieving superior strength-ductility balance in a novel heterostructured strong metastable β-Ti alloy , 2021, International Journal of Plasticity.

[3]  A. Minor,et al.  Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al , 2021, Nature Communications.

[4]  B. Himabindu,et al.  Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models; A review , 2021, Materials Today: Proceedings.

[5]  Yihang Fan,et al.  Study on staged work hardening mechanism of nickel-based single crystal alloy during atomic and close-to-atomic scale cutting , 2021 .

[6]  P. Gumbsch,et al.  Repulsion leads to coupled dislocation motion and extended work hardening in bcc metals , 2020, Nature Communications.

[7]  A. Minor,et al.  Mechanistic basis of oxygen sensitivity in titanium , 2020, Science Advances.

[8]  Wenguang Zhu,et al.  Tensile brittleness and ductility improvement in a novel metastable β titanium alloy with lamella structure , 2020 .

[9]  J. Lloyd,et al.  A four parameter hardening model for TWIP and TRIP steels , 2020 .

[10]  R. Ritchie,et al.  Making ultrastrong steel tough by grain-boundary delamination , 2020, Science.

[11]  Sheng-wu Guo,et al.  A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility , 2018, Acta Materialia.

[12]  D. Seidman,et al.  The effect of zirconium on the omega phase in Ti-24Nb-[0–8]Zr (at.%) alloys , 2018, Acta Materialia.

[13]  N. Hansen,et al.  The microstructural origin of work hardening stages , 2018 .

[14]  H. Gong,et al.  Effect of alloying elements on stacking fault energy and ductility of tungsten , 2018 .

[15]  L. P. Karjalainen,et al.  A new multi-element beta titanium alloy with a high yield strength exhibiting transformation and twinning induced plasticity effects , 2018 .

[16]  Fu-chi Wang,et al.  Correlation between dislocation-density-based strain hardening and microstructural evolution in dual phase TC6 titanium alloy , 2018 .

[17]  M. Pérez-Prado,et al.  High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys , 2018 .

[18]  Y. Estrin,et al.  Twinning-induced plasticity (TWIP) steels , 2018 .

[19]  Wei Zhang,et al.  Effect of microstructure characteristic on mechanical properties and corrosion behavior of new high strength Ti-1300 beta titanium alloy , 2017 .

[20]  Jiangting Wang,et al.  A critical assessment of work hardening in TWIP steels through micropillar compression , 2017 .

[21]  D. McDowell,et al.  Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten , 2017 .

[22]  Xuesen Zhao,et al.  Plastic deformation mechanisms in face-centered cubic materials with low stacking fault energy , 2016 .

[23]  K. Le,et al.  Continuum dislocation theory accounting for redundant dislocations and Taylor hardening , 2016 .

[24]  S. M. Abbasi,et al.  Deformation-induced martensitic transformation in a new metastable β titanium alloy , 2015 .

[25]  D. Raabe,et al.  The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation , 2015 .

[26]  B. K. Choudhary,et al.  Tensile flow and work hardening behaviour of type 316L(N) austenitic stainless steel in the framework of one-internal-variableand two-internal-variable approaches , 2015 .

[27]  I. M. Robertson,et al.  Dislocation interactions with grain boundaries , 2014 .

[28]  F. Prima,et al.  Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects , 2013 .

[29]  M. D. Mathew,et al.  Applicability of the one-internal-variable Kocks–Mecking approach for tensile flow and work hardening behaviour of modified 9Cr–1Mo steel , 2013 .

[30]  R. Schouwenaars A statistical analysis of strain hardening: The percolation limit and the Taylor equation , 2012 .

[31]  P. Castany,et al.  In situ TEM study of dislocation slip in a metastable β titanium alloy , 2012 .

[32]  K. Tsuzaki,et al.  Effect of Fe and Zr additions on ω phase formation in β-type Ti–Mo alloys , 2008 .

[33]  T. Ungár Microstructural parameters from X-ray diffraction peak broadening , 2004 .

[34]  Zhirui Wang Cyclic deformation response of planar-slip materials and a new criterion for the wavy-to-planar-slip transition , 2004 .

[35]  Fenghua Zhou,et al.  High tensile ductility in a nanostructured metal , 2002, Nature.

[36]  G. Kostorz,et al.  Transition between planar and wavy slip in cyclically deformed short-range ordered alloys , 1994 .

[37]  H. Karnthaler,et al.  On the origin of planar slip in f.c.c. alloys , 1989 .

[38]  Doris Kuhlmann-Wilsdorf,et al.  Theory of plastic deformation: - properties of low energy dislocation structures , 1989 .

[39]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .