Kineto-elastodynamic balancing of 4R-four bar mechanisms combining kinematic and dynamic stress considerations

Abstract When a mechanism runs at high speed and has elastic links, its links vibrate under the action of forces present on the mechanism. The acceleration field resulting from the vibration of the links develops additional interia forces called kineto-elastodynamic (KED) inertia forces. The present paper takes into account the contribution of the KED inertia forces towards the shaking force and shaking moment while balancing planar mechanisms. Combining kinematic design and dynamic stress considerations an optimal kinematic design of the mechanism satisfying the given aim and optimal cross-sectional areas of the links were determined such that the shaking force trasmitted to the foundations due to the combined effect of rigid-body inertia forces and KED inertia forces is a minimum.

[1]  R. S. Berkof Complete force and moment balancing of inline four-bar linkages , 1973 .

[2]  Chi-Yeh Han Balancing of High Speed Machinery , 1967 .

[3]  G. G. Lowen,et al.  Shaking Force Optimization of Four-Bar Linkage With Adjustable Constraints on Ground Bearing Forces , 1975 .

[4]  G. G. Lowen,et al.  Survey of investigations into the balancing of linkages , 1968 .

[5]  Delbert Tesar,et al.  The theory of torque, shaking force, and shaking moment balancing of four link mechanisms , 1976 .

[6]  Ferdinand Freudenstein,et al.  Kinematic Synthesis of Linkages , 1965 .

[7]  C. D. Mote,et al.  Optimization methods for engineering design , 1971 .

[8]  Cemil Bagci Shaking force balancing of planar linkages with force transmission irregularities using balancing idler loops , 1979 .

[9]  B. Roth,et al.  Momentum Balancing of Four-Bar Linkages , 1976 .

[10]  A. H. Soni,et al.  Mechanism synthesis and analysis , 1981 .

[11]  Cemil Bagci,et al.  Design equations for the complete shaking force balancing of 6R 6-bar and 6-bar slider-crank mechanisms , 1978 .

[12]  Krishna C. Gupta,et al.  Optimization Technology as Applied to Mechanism Design , 1973 .

[13]  G. G. Lowen,et al.  General Theorems Concerning Full Force Balancing of Planar Linkages by Internal Mass Redistribution , 1972 .

[14]  G. G. Lowen,et al.  Theory of Shaking Moment Optimization of Force-Balanced Four-Bar Linkages , 1971 .

[15]  G. G. Lowen,et al.  Determination of Force-Balanced Four-Bar Linkages With Optimum Shaking Moment Characteristics , 1971 .

[16]  R. W. Mayne,et al.  Optimum Mechanism Design Combining Kinematic and Dynamic-Force Considerations , 1975 .

[17]  Moshe F. Rubinstein,et al.  Matrix computer analysis of structures , 1967 .

[18]  R. C. Winfrey,et al.  Elastic Link Mechanism Dynamics , 1971 .

[19]  M. J. Walker,et al.  Extensions to the theory of balancing frame forces in planar linkages , 1979 .

[20]  R. E. Kaufman,et al.  Complete Force Balancing of Spatial Linkages , 1971 .

[21]  George N. Sandor,et al.  Deflection and Stress Analysis in High Speed Planar Mechanisms With Elastic Links , 1973 .

[22]  P. Nath,et al.  Kineto-elastodynamic analysis of mechanisms by finite element method , 1980 .

[23]  G. G. Lowen,et al.  A New Method for Com-pletely Force Balancing Simple Linkages , 1969 .

[24]  K. Oldham,et al.  A general theory of force balancing using counterweights , 1978 .

[25]  M. A. Brebner,et al.  Algorithm 343: eigenvalues and eigenvectors of a real general matrix , 1968, Commun. ACM.

[26]  J. S. Przemieniecki Theory of matrix structural analysis , 1985 .