Quantifier elimination in valued Ore modules

We consider valued fields with a distinguished isometry or contractive derivation as valued modules over the Ore ring of difference operators. Under certain assumptions on the residue field, we prove quantifier elimination first in the pure module language, then in that language augmented with a chain of additive subgroups, and finally in a two-sorted language with a valuation map. We apply quantifier elimination to prove thet these structures do not have the independence property.

[1]  Françoise Point,et al.  The theory of modules of separably closed fields 1 , 2002, Journal of Symbolic Logic.

[2]  M. Prest Model theory and modules , 1988 .

[3]  Timothy H. McNicholl Review of "Complexity and real computation" by Blum, Cucker, Shub, and Smale. Springer-Verlag. , 2001, SIGA.

[4]  Volker Weispfenning,et al.  Quantifier elimination and decision procedures for valued fields , 1984 .

[5]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[6]  Thomas Rohwer Valued Difference Fields as Modules Over Twisted Polynomial Rings , 2003 .

[7]  Luc Bélair,et al.  Élimination des quantificateurs dans les équations aux différences linéaires sur les vecteurs de Witt , 2008 .

[8]  Irving Kaplansky Selected papers and other writings , 1995 .

[9]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[10]  Moshe Jarden,et al.  THE ELEMENTARY THEORY OF FINITE FIELDS , 2004 .

[11]  Thomas Scanlon,et al.  Quantifier Elimination for the Relative Frobenius , 2000 .

[12]  L. Dries Quantifier elimination for linear formulas over ordered and valued fields , 1981 .

[13]  Thomas Scanlon,et al.  Model theory of the Frobenius on the Witt vectors , 2007 .

[14]  Paulo Ribenboim,et al.  Differential equations over valued fields (and more) , 2004 .

[15]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[16]  Salih Azgin Model Theory of Valued Difference Fields , 2007 .

[17]  Christian Michaux,et al.  Quelques remarques concernant la thorie des corps ordonns diffrentiellement clos , 2005 .

[18]  Yves Hellegouarch Modules de Drinfeld généralisés , 1992 .

[19]  Françoise Point,et al.  The theory of modules of separably closed fields 2 , 2002, Ann. Pure Appl. Log..

[20]  M. Karpinski,et al.  Approximating Volumes and Integrals in o-Minimal and p-Minimal Theories , 1997 .

[21]  Peter H. Schmitt,et al.  THE THEORY OF ORDERED ABELIAN GROUPS DOES NOT HAVE THE INDEPENDENCE PROPERTY , 1984 .

[22]  Luc Bélair,et al.  L'automorphisme de Frobenius des vecteurs de Witt , 2000 .

[23]  Andy R. Magid,et al.  Lectures on differential Galois theory , 1994 .

[24]  Angus D. Macintyre Connections between model theory and algebraic and analytic geometry , 2000 .

[25]  Luc Bélair,et al.  Types dans les corps valués munis d'applications coefficients , 1999 .

[26]  Ehud Hrushovski,et al.  On von Neumann regular rings with an automorphism , 2007 .

[27]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[28]  Hans Adler,et al.  Introduction to theories without the independence property , 2008 .