Integrating Image and Spatial Data for Biodiversity Information Management

Biologists gather many kinds of data for biodiversity studies; these data are managed by distinct types of information systems. GIS-based biodiversity systems support sophisticated spatial correlations on living beings and their habitats, and spatio-temporal ecosystem modeling. Image information systems allow content-based image retrieval, to help species identification based on similarity (e.g., shape and color characteristics). Different kinds of rule-based systems support species characterization. Unfortunately, these systems (and the underlying data) are independent of each other. This paper presents a solution that seamlessly combines these functionalities, supporting queries that merge textual descriptions, spatial correlations and content-based predicates. The solution is being implemented at Virginia Tech, for identification and data retrieval, supporting management of fish species. It takes advantage of innovations in Digital Library technology to combine networked collections of heterogeneous data under integrated management.

[1]  Herng-Yow Chen,et al.  A digital museum of Taiwanese butterflies , 2000, DL '00.

[2]  Gilberto Câmara,et al.  Interoperability in Practice: Problems in Semantic Conversion from Current Technology to OpenGIS , 1999, INTEROP.

[3]  Kien A. Hua,et al.  Image Retrieval Based on Regions of Interest , 2003, IEEE Trans. Knowl. Data Eng..

[4]  Luciano da Fontoura Costa,et al.  A graph-based approach for multiscale shape analysis , 2004, Pattern Recognit..

[5]  Edward A. Fox,et al.  Open digital libraries , 2002 .

[6]  Ralf Hartmut Güting Dr.rer.nat An introduction to spatial database systems , 2005, The VLDB Journal.

[7]  Fatos T. Yarman-Vural,et al.  BAS: a perceptual shape descriptor based on the beam angle statistics , 2003, Pattern Recognit. Lett..

[8]  Ricardo da Silva Torres,et al.  Visual structures for image browsing , 2003, CIKM '03.

[9]  Victor Mesev,et al.  Remote sensing of urban systems: Hierarchical integration with GIS , 1997 .

[10]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[11]  N. Burkhead,et al.  Freshwater Fishes of Virginia , 1994 .

[12]  Val Noronha,et al.  Towards ITS Map Database Interoperability—Database Error and Rectification , 2000, GeoInformatica.

[13]  J. Edwards,et al.  The Global Biodiversity Information Facility (GBIF) , 2007 .

[14]  Agnès Voisard,et al.  Spatial Databases: With Application to GIS , 2001 .

[15]  Michael Stonebraker,et al.  Chabot: Retrieval from a Relational Database of Images , 1995, Computer.

[16]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[17]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[18]  E.A. Fox,et al.  An OAI compliant content-based image search component , 2004, Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004..

[19]  J. Alfredo Sánchez,et al.  Mutant: agents as guides for multiple taxonomies in the floristic digital library , 1999, DL '99.

[20]  Pavel Zezula,et al.  M-tree: An Efficient Access Method for Similarity Search in Metric Spaces , 1997, VLDB.

[21]  Herbert Van de Sompel,et al.  The open archives initiative: building a low-barrier interoperability framework , 2001, JCDL '01.

[22]  Hanan Samet,et al.  Spatial Databases , 1992, VLDB.

[23]  Edward A. Fox,et al.  Building digital libraries from simple building blocks , 2003, Online Inf. Rev..

[24]  Ralf Hartmut Güting,et al.  An introduction to spatial database systems , 1994, VLDB J..