Spectral norm of products of random and deterministic matrices

We study the spectral norm of matrices W that can be factored as W = BA, where A is a random matrix with independent mean zero entries and B is a fixed matrix. Under the (4 + ε)th moment assumption on the entries of A, we show that the spectral norm of such an m × n matrix W is bounded by $${\sqrt{m} + \sqrt{n}}$$, which is sharp. In other words, in regard to the spectral norm, products of random and deterministic matrices behave similarly to random matrices with independent entries. This result along with the previous work of Rudelson and the author implies that the smallest singular value of a random m × n matrix with i.i.d. mean zero entries and bounded (4 + ε)th moment is bounded below by $${\sqrt{m} - \sqrt{n-1}}$$ with high probability.

[1]  Charles M. Newman,et al.  On uncomplemented subspaces ofLp, 1 , 1977 .

[2]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[3]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[4]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[5]  J. W. Silverstein,et al.  A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .

[6]  Miklós Simonovits,et al.  Szemerédi's Partition and Quasirandomness , 1991, Random Struct. Algorithms.

[7]  Stanislaw J. Szarek,et al.  Condition numbers of random matrices , 1991, J. Complex..

[8]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[9]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[10]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[11]  M. Talagrand Majorizing measures: the generic chaining , 1996 .

[12]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[13]  M. Talagrand A new look at independence , 1996 .

[14]  Miklós Simonovits,et al.  Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.

[15]  M. Simonovits,et al.  Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .

[16]  J. Bourgain Random Points in Isotropic Convex Sets , 1998 .

[17]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[18]  J. W. Silverstein,et al.  EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .

[19]  Yoav Seginer,et al.  The Expected Norm of Random Matrices , 2000, Combinatorics, Probability and Computing.

[20]  M. Ledoux The concentration of measure phenomenon , 2001 .

[21]  A. Khorunzhy Sparse random matrices: spectral edge and statistics of rooted trees , 2001, Advances in Applied Probability.

[22]  Gábor Lugosi,et al.  Concentration Inequalities , 2008, COLT.

[23]  R. Lata,et al.  SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .

[24]  A. Giannopoulos,et al.  Random Points in Isotropic Unconditional Convex Bodies , 2005 .

[25]  R. Latala Some estimates of norms of random matrices , 2005 .

[26]  M. Rudelson Invertibility of random matrices: norm of the inverse , 2005, math/0507024.

[27]  M. Rudelson,et al.  Smallest singular value of random matrices and geometry of random polytopes , 2005 .

[28]  G. Paouris Concentration of mass on convex bodies , 2006 .

[29]  Mark Rudelson,et al.  Lower estimates for the singular values of random matrices , 2006 .

[30]  V. Milman,et al.  Polynomial bounds for Large Bernoulli sections of ℓ1N , 2006 .

[31]  Polynomial bounds for large Bernoulli sections of $\ell_1^N$ , 2006, math/0601369.

[32]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[33]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[34]  Guillaume Aubrun Sampling convex bodies: a random matrix approach , 2007 .

[35]  M. Rudelson,et al.  The least singular value of a random square matrix is O(n−1/2) , 2008, 0805.3407.

[36]  Ohad N. Feldheim,et al.  A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.

[37]  M. Rudelson,et al.  The smallest singular value of a random rectangular matrix , 2008, 0802.3956.

[38]  T. Tao,et al.  Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.

[39]  R. Adamczak,et al.  Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.