Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology.

The relationships of the "primary" cytoarchitectonic neocortical fields, 17, 41, 3b, and 4 (Brodmann areas), to salient topographic landmarks have been reconstructed from serial histological sections in 20 human cerebral hemispheres (10 brains). Each of these architectonic fields is found to bear a characteristic relationship to a set of enframing anatomic landmarks, in particular, gyri, fissures, and sulci, that can be readily defined by MRI. Two classes of variability were found characteristic, at least to some extent, of each of the fields. Class 1 variability--variability that is not predictable from visible landmarks--was typical of the polar and for the cuneal and lingual extracalcarine distributions of field 17 and the distribution of field 4 upon the paracentral lobule. Class 2 variability--variability that is closely predictable from visible landmarks--is seen in the marked interindividual or interhemispheric variation in size or shape of a field and was found to be prominent for all four fields. Because of the prominence of class 2 variability, direct reference to the landmarks that frame these fields may be expected to be a more reliable basis for functional mapping than reference to a template or stereotactic coordinate-based system of reference to a standard or idealized brain.

[1]  Richard L. Heschl,et al.  Ueber die vordere quere Schläfenwindung des menschlichen Grosshirns , 1878 .

[2]  Joseph Shaw Bolton The Exact Histological Localisation of the Visual Area of the Human Cerebral Cortex , 1900 .

[3]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[4]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[5]  C. Economo,et al.  Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede , 1930 .

[6]  G. Holmes A CONTRIBUTION TO THE CORTICAL REPRESENTATION OF VISION , 1931 .

[7]  W. Penfield The Cerebral Cortex of Man , 1950 .

[8]  G. Bonin,et al.  The isocortex of man , 1951 .

[9]  J M SPALDING,et al.  WOUNDS OF THE VISUAL PATHWAY , 1952 .

[10]  J M K SPALDING,et al.  WOUNDS OF THE VISUAL PATHWAY , 1952, Journal of neurology, neurosurgery, and psychiatry.

[11]  N. Geschwind,et al.  Human Brain: Left-Right Asymmetries in Temporal Speech Region , 1968, Science.

[12]  Edgar M. Housepian Atlas d'anatomie stereotaxique du telencephale. , 1968 .

[13]  A. Iggo,et al.  Somatosensory System , 1973 .

[14]  W. H. Dobelle,et al.  The topography and variability of the primary visual cortex in man. , 1974, Journal of neurosurgery.

[15]  Brenda Milner,et al.  Clinical and Surgical Studies of the Cerebral Speech Areas in Man , 1975 .

[16]  Marjorie LeMay,et al.  MORPHOLOGICAL CEREBRAL ASYMMETRIES OF MODERN MAN, FOSSIL MAN, AND NONHUMAN PRIMATE , 1976, Annals of the New York Academy of Sciences.

[17]  N. Geschwind,et al.  Human Brain: Cytoarchitectonic Left-Right Asymmetries in the Temporal Speech Region , 1978 .

[18]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[19]  Prof. Dr. Heiko Braak,et al.  Architectonics of the Human Telencephalic Cortex , 1980, Studies of Brain Function.

[20]  D. Weinberger,et al.  Asymmetrical volumes of the right and left frontal and occipital regions of the human brain , 1982, Annals of neurology.

[21]  S. Wise,et al.  The premotor cortex of the monkey , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  L. Kaufman,et al.  Tonotopic organization of the human auditory cortex. , 1982, Science.

[23]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[24]  S. Wise The primate premotor cortex: past, present, and preparatory. , 1985, Annual review of neuroscience.

[25]  N. Geschwind,et al.  Developmental dyslexia: Four consecutive patients with cortical anomalies , 1985, Annals of neurology.

[26]  D. Pandya,et al.  Architecture and Connections of Cortical Association Areas , 1985 .

[27]  Frank H. Duffy,et al.  Topographic Mapping of Brain Electrical Activity , 1986 .

[28]  J. Allman,et al.  Mapping human visual cortex with positron emission tomography , 1986, Nature.

[29]  D. V. van Essen,et al.  Retinotopic organization of human visual cortex mapped with positron- emission tomography , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Glenn D. Rosen,et al.  Planum temporale asymmetry, reappraisal since Geschwind and Levitsky , 1987, Neuropsychologia.

[31]  J. Lettvin,et al.  Peripheral vision in persons with dyslexia. , 1987, The New England journal of medicine.

[32]  A. Damasio,et al.  Lesion analysis in neuropsychology , 1989 .

[33]  K Zilles,et al.  Cerebral asymmetry: MR planimetry of the human planum temporale. , 1989, Journal of computer assisted tomography.

[34]  C. Pelizzari,et al.  Accurate Three‐Dimensional Registration of CT, PET, and/or MR Images of the Brain , 1989, Journal of computer assisted tomography.

[35]  Michael S. Gazzaniga,et al.  Brainprints: Computer-Generated Two-Dimensional Maps of the Human Cerebral Cortex in vivo , 1989, Journal of Cognitive Neuroscience.

[36]  H. Freund,et al.  Cerebral Cortical Localization: Application and Validation of the Proportional Grid System in MR Imaging , 1989, Journal of computer assisted tomography.

[37]  H. Steinmetz,et al.  Craniocerebral topography within the international 10-20 system. , 1989, Electroencephalography and clinical neurophysiology.

[38]  Lutz Jäncke,et al.  Total surface of temporoparietal intrasylvian cortex: Diverging left-right asymmetries , 1990, Brain and Language.

[39]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[40]  F. H. Lopes da Silva,et al.  A critical review of clinical applications of topographic mapping of brain potentials. , 1990 .

[41]  M Hoke,et al.  Identification of sources of brain neuronal activity with high spatiotemporal resolution through combination of neuromagnetic source localization (NMSL) and magnetic resonance imaging (MRI). , 1990, Electroencephalography and clinical neurophysiology.

[42]  G A Ojemann,et al.  Correlation of motor cortex brain mapping data with magnetic resonance imaging. , 1990, Journal of neurosurgery.

[43]  H. Freund,et al.  Variation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates. , 1990, AJNR. American journal of neuroradiology.

[44]  R. Srebro,et al.  Localization of visually evoked cortical activity using magnetic resonance imaging and computerized tomography , 1990, Vision Research.

[45]  R Coppola,et al.  Adequacy of the International 10–20 Electrode System for Computed Neurophysiologic Topography , 1990, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[46]  Y. Kuroiwa,et al.  Amplitude asymmetry of hemifield pattern reversal VEPs in healthy subjects. , 1990, Electroencephalography and clinical neurophysiology.

[47]  J C Mazziotta,et al.  Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography. , 1991, Journal of neurophysiology.

[48]  J Ehrhardt,et al.  Magnetic resonance imaging of human intracortical structure in vivo. , 1991, Cerebral cortex.

[49]  Lutz Jäncke,et al.  Anatomical left‐right asymmetry of language‐related temporal cortex is different in left‐ and right‐handers , 1991, Annals of neurology.

[50]  R Llinás,et al.  Anatomical localization revealed by MEG recordings of the human somatosensory system. , 1991, Electroencephalography and clinical neurophysiology.

[51]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[52]  H. Freund,et al.  Individual Integration of Positron Emission Tomography and High-Resolution Magnetic Resonance Imaging , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[53]  A. Galaburda,et al.  Human Cerebral Cortex: Localization, Parcellation, and Morphometry with Magnetic Resonance Imaging , 1992, Journal of Cognitive Neuroscience.

[54]  E Courchesne,et al.  In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. , 1992, Cerebral cortex.

[55]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.