Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery

In the past decade, mesoporous silica nanoparticles (MSNs) have attracted more and more attention for their potential biomedical applications. With their tailored mesoporous structure and high surface area, MSNs as drug delivery systems (DDSs) show significant advantages over traditional drug nanocarriers. In this review, we overview the recent progress in the synthesis of MSNs for drug delivery applications. First, we provide an overview of synthesis strategies for fabricating ordered MSNs and hollow/rattle-type MSNs. Then, the in vitro and in vivo biocompatibility and biotranslocation of MSNs are discussed in relation to their chemophysical properties including particle size, surface properties, shape, and structure. The review also highlights the significant achievements in drug delivery using mesoporous silica nanoparticles and their multifunctional counterparts as drug carriers. In particular, the biological barriers for nano-based targeted cancer therapy and MSN-based targeting strategies are discussed. We conclude with our personal perspectives on the directions in which future work in this field might be focused.

[1]  Hongyu Chen,et al.  Revisiting the Stöber method: inhomogeneity in silica shells. , 2011, Journal of the American Chemical Society.

[2]  Po-Wen Chung,et al.  Facile Synthesis of Monodisperse Spherical MCM-48 Mesoporous Silica Nanoparticles with Controlled Particle Size , 2010 .

[3]  Limin Guo,et al.  Double mesoporous silica shelled spherical/ellipsoidal nanostructures: Synthesis and hydrophilic/hydrophobic anticancer drug delivery , 2011 .

[4]  Dong Chen,et al.  The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. , 2010, Biomaterials.

[5]  S. Aloni,et al.  Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. , 2008, Angewandte Chemie.

[6]  G. Lu,et al.  Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. , 2010, Angewandte Chemie.

[7]  A. Garcia‐Bennett Synthesis, toxicology and potential of ordered mesoporous materials in nanomedicine. , 2011, Nanomedicine.

[8]  Zongxi Li,et al.  Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. , 2010, Small.

[9]  T. Bein,et al.  Biotin-avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica. , 2009, Angewandte Chemie.

[10]  Lei Li,et al.  A facile route to hollow nanospheres of mesoporous silica with tunable size. , 2008, Chemical communications.

[11]  Gustavo Helguera,et al.  The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. , 2006, Clinical immunology.

[12]  M. Gottesman,et al.  Multidrug resistance in cancer: role of ATP–dependent transporters , 2002, Nature Reviews Cancer.

[13]  Srikanth K. Iyer,et al.  Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. , 2011, The Journal of clinical investigation.

[14]  Chung-Yuan Mou,et al.  Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. , 2009, Small.

[15]  W. Hennink,et al.  Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. , 2007, International journal of pharmaceutics.

[16]  V. Alfredsson,et al.  Structure of MCM-48 Revealed by Transmission Electron Microscopy , 1996 .

[17]  Taeghwan Hyeon,et al.  Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. , 2008, Angewandte Chemie.

[18]  Patrick Augustijns,et al.  Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[19]  Brian G. Trewyn,et al.  Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration , 2008 .

[20]  Shinsuke Sando,et al.  A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. , 2004, Journal of the American Chemical Society.

[21]  Dean-Mo Liu,et al.  Magnetic-sensitive silica nanospheres for controlled drug release. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[22]  Qingbiao Yang,et al.  Synthesis of magnetic and fluorescent multifunctional hollow silica nanocomposites for live cell imaging. , 2010, Journal of colloid and interface science.

[23]  Mark T. Anderson,et al.  Effect of Methanol Concentration on CTAB Micellization and on the Formation of Surfactant-Templated Silica (STS) , 1998 .

[24]  T. Asefa,et al.  Mesoporosity and functional group dependent endocytosis and cytotoxicity of silica nanomaterials. , 2009, Chemical research in toxicology.

[25]  Y. Hung,et al.  Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells , 2009 .

[26]  Yingchun Zhu,et al.  Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled-release nanosystem. , 2007, Angewandte Chemie.

[27]  T. Xia,et al.  Toxic Potential of Materials at the Nanolevel , 2006, Science.

[28]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  So-Jung Park,et al.  Size-dependent shape evolution of silica nanoparticles into hollow structures. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[30]  Jun Wang,et al.  Protein-based nanomedicine platforms for drug delivery. , 2009, Small.

[31]  K. Neoh,et al.  pH-Responsive hollow polymeric microspheres and concentric hollow silica microspheres from silica-polymer core-shell microspheres. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[32]  P. Okunieff,et al.  Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. , 1989, Cancer research.

[33]  Zhenda Lu,et al.  Rattle-type silica colloidal particles prepared by a surface-protected etching process , 2009 .

[34]  C. Jeffrey Brinker,et al.  Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. , 2009, Journal of the American Chemical Society.

[35]  Yufang Zhu,et al.  A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property , 2005 .

[36]  Yasuo Yoshioka,et al.  Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. , 2011, Nature nanotechnology.

[37]  Dong Chen,et al.  Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. , 2011, ACS nano.

[38]  E. Sacher,et al.  pH-Triggered Doxorubicin Delivery Based on Hollow Nanoporous Silica Nanoparticles with Free-Standing Superparamagnetic Fe3O4 Cores , 2011 .

[39]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[40]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[41]  Wenjun Meng,et al.  Hollow Mesoporous Silica/Poly(l-lysine) Particles for Codelivery of Drug and Gene with Enzyme-Triggered Release Property , 2011 .

[42]  Monty Liong,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. , 2008, ACS nano.

[43]  Myung-Haing Cho,et al.  Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. , 2008, International journal of pharmaceutics.

[44]  Hamidreza Ghandehari,et al.  Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. , 2011, ACS nano.

[45]  Hideyoshi Harashima,et al.  A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. , 2011, Advanced drug delivery reviews.

[46]  Yu Chen,et al.  Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. , 2010, ACS nano.

[47]  T. Bein,et al.  Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles , 2010 .

[48]  Elena Aznar,et al.  Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with "saccharides". , 2010, ACS nano.

[49]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[50]  Luis M Liz-Marzán,et al.  Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials , 2010, Advanced materials.

[51]  W. Shim,et al.  Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA , 2008 .

[52]  Chung-Yuan Mou,et al.  Multifunctional Mesoporous Silica Nanoparticles for Intracellular Labeling and Animal Magnetic Resonance Imaging Studies , 2008, Chembiochem : a European journal of chemical biology.

[53]  M. Vallet‐Regí,et al.  MCM-41 Organic Modification as Drug Delivery Rate Regulator , 2003 .

[54]  Douglas A. Loy,et al.  BRIDGED POLYSILSESQUIOXANES. HIGHLY POROUS HYBRID ORGANIC-INORGANIC MATERIALS , 1995 .

[55]  Aifei Wang,et al.  pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. , 2011, Journal of the American Chemical Society.

[56]  Xinglu Huang,et al.  Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. , 2011, Biomaterials.

[57]  R. Jain,et al.  Delivering nanomedicine to solid tumors , 2010, Nature Reviews Clinical Oncology.

[58]  C. Botting,et al.  Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve , 2001 .

[59]  Douglas C. Friedman,et al.  Redox- and pH-controlled mechanized nanoparticles , 2009 .

[60]  Kirsten Sandvig,et al.  Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies , 2011 .

[61]  Rasmus Niemi,et al.  Targeting of porous hybrid silica nanoparticles to cancer cells. , 2009, ACS nano.

[62]  Xun Wang,et al.  Hydrothermal synthesis of hollow silica spheres under acidic conditions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[63]  Hongchen Gu,et al.  The packaging of siRNA within the mesoporous structure of silica nanoparticles. , 2011, Biomaterials.

[64]  Mauro Ferrari,et al.  Intravascular Delivery of Particulate Systems: Does Geometry Really Matter? , 2008, Pharmaceutical Research.

[65]  M. Vallet‐Regí,et al.  Functionalization degree of SBA-15 as key factor to modulate sodium alendronate dosage , 2008 .

[66]  Francesco M Veronese,et al.  PEGylation, successful approach to drug delivery. , 2005, Drug discovery today.

[67]  Y. Yeh,et al.  Synthesis of hollow silica spheres with mesostructured shell using cationic-anionic-neutral block copolymer ternary surfactants. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[68]  J. F. Stoddart,et al.  Controlled-access hollow mechanized silica nanocontainers. , 2009, Journal of the American Chemical Society.

[69]  Bengt Fadeel,et al.  Nanotoxicology: no small matter. , 2010, Nanoscale.

[70]  Andrew Worth,et al.  Computational nanotoxicology: Predicting toxicity of nanoparticles. , 2011, Nature nanotechnology.

[71]  J. Eriksson,et al.  Targeted intracellular delivery of hydrophobic agents using mesoporous hybrid silica nanoparticles as carrier systems. , 2009, Nano letters.

[72]  S. Moghimi,et al.  Liposome-Mediated Triggering of Complement Cascade , 2008 .

[73]  Yu Chen,et al.  Bottom-up tailoring of nonionic surfactant-templated mesoporous silica nanomaterials by a novel composite liquid crystal templating mechanism , 2009 .

[74]  Rajeev Kumar,et al.  Temperature Responsive Solution Partition of Organic–Inorganic Hybrid Poly(N‐isopropylacrylamide)‐Coated Mesoporous Silica Nanospheres , 2008 .

[75]  María Vallet-Regí,et al.  Bone-regenerative bioceramic implants with drug and protein controlled delivery capability , 2008 .

[76]  Fangqiong Tang,et al.  A Silica Nanorattle with a Mesoporous Shell: An Ideal Nanoreactor for the Preparation of Tunable Gold Cores , 2010, Advanced materials.

[77]  Francesco Stellacci,et al.  Effect of surface properties on nanoparticle-cell interactions. , 2010, Small.

[78]  C. Haynes,et al.  Synthesis and Characterization of Biocompatible and Size-Tunable Multifunctional Porous Silica Nanoparticles , 2009 .

[79]  Jeffrey I. Zink,et al.  Versatile Supramolecular Nanovalves Reconfigured for Light Activation , 2007 .

[80]  Min Zhang,et al.  Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. , 2009, Small.

[81]  Zongxi Li,et al.  Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. , 2011, ACS nano.

[82]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[83]  Qiang Cai,et al.  Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium , 2001 .

[84]  Sang Cheon Lee,et al.  Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. , 2007, Angewandte Chemie.

[85]  S. Rankin,et al.  Dual latex/surfactant templating of hollow spherical silica particles with ordered mesoporous shells. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[86]  Avelino Corma,et al.  Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. , 2009, The journal of physical chemistry. B.

[87]  Jun Song Chen,et al.  Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. , 2011, Chemical communications.

[88]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[89]  María Vallet-Regí,et al.  Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. , 2006, Journal of the American Chemical Society.

[90]  Wayne Ouellette,et al.  Cytotoxicity of mesoporous silica nanomaterials. , 2008, Journal of inorganic biochemistry.

[91]  Q. Ruan,et al.  Dipolar molecules as impellers achieving electric-field-stimulated release. , 2010, Journal of the American Chemical Society.

[92]  Yaping Li,et al.  Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. , 2009, Small.

[93]  Saji George,et al.  Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. , 2009, ACS nano.

[94]  Jung Ho Yu,et al.  Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. , 2006, Journal of the American Chemical Society.

[95]  L. Archer,et al.  Encapsulation and Ostwald Ripening of Au and Au–Cl Complex Nanostructures in Silica Shells , 2006 .

[96]  Monty Liong,et al.  Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. , 2007, Small.

[97]  Victor S-Y Lin,et al.  Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. , 2007, Journal of the American Chemical Society.

[98]  G. Lu,et al.  Magnetic nanocomposites with mesoporous structures: synthesis and applications. , 2011, Small.

[99]  J. Eriksson,et al.  Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. , 2010, Small.

[100]  Linlin Li,et al.  Facile and Scalable Synthesis of Tailored Silica “Nanorattle” Structures , 2009 .

[101]  Y. Chen,et al.  Multifunctional magnetically removable nanogated lids of Fe3O4–capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging , 2011 .

[102]  Wolfgang J. Parak,et al.  Uptake of Colloidal Polyelectrolyte‐Coated Particles and Polyelectrolyte Multilayer Capsules by Living Cells , 2008 .

[103]  L. Archer,et al.  Hollow Micro‐/Nanostructures: Synthesis and Applications , 2008 .

[104]  Volker Wagner,et al.  The emerging nanomedicine landscape , 2006, Nature Biotechnology.

[105]  Alf Lamprecht,et al.  The targeting of surface modified silica nanoparticles to inflamed tissue in experimental colitis. , 2008, Biomaterials.

[106]  Cecilia Sahlgren,et al.  Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[107]  Yaping Li,et al.  In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. , 2011, Small.

[108]  Feng Chen,et al.  Multifunctional Mesoporous Nanoellipsoids for Biological Bimodal Imaging and Magnetically Targeted Delivery of Anticancer Drugs , 2011 .

[109]  Victor S-Y Lin,et al.  Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. , 2006, Journal of the American Chemical Society.

[110]  P. Liu,et al.  Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. , 2011, Angewandte Chemie.

[111]  Jian Liu,et al.  Tunable Assembly of Organosilica Hollow Nanospheres , 2010 .

[112]  Zongxi Li,et al.  Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells. , 2010, Small.

[113]  Douglas J Taatjes,et al.  Unique uptake of acid-prepared mesoporous spheres by lung epithelial and mesothelioma cells. , 2007, American journal of respiratory cell and molecular biology.

[114]  M. Yada,et al.  Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure. , 2007, Journal of the American Chemical Society.

[115]  S. Bhatia,et al.  Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging , 2008, Advanced materials.

[116]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[117]  M. Fröba,et al.  Silica-based mesoporous organic-inorganic hybrid materials. , 2006, Angewandte Chemie.

[118]  X. Ji,et al.  A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. , 2011, Biomaterials.

[119]  Qianjun He,et al.  Surface Modification−Complexation Strategy for Cisplatin Loading in Mesoporous Nanoparticles , 2010 .

[120]  R. Martínez‐Máñez,et al.  pH- and photo-switched release of guest molecules from mesoporous silica supports. , 2009, Journal of the American Chemical Society.

[121]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles: structural design and applications , 2010 .

[122]  R. Panchagnula,et al.  Peroral route: an opportunity for protein and peptide drug delivery. , 2001, Chemical reviews.

[123]  T. Asefa,et al.  Mesoporous silica microparticles enhance the cytotoxicity of anticancer platinum drugs. , 2010, ACS nano.

[124]  J. F. Stoddart,et al.  Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. , 2010, Journal of the American Chemical Society.

[125]  Pingyun Feng,et al.  Multiresponsive supramolecular nanogated ensembles. , 2009, Journal of the American Chemical Society.

[126]  Chun-hua Lu,et al.  Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. , 2011, Journal of the American Chemical Society.

[127]  J. F. Stoddart,et al.  pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. , 2008, Angewandte Chemie.

[128]  S. Bhattarai,et al.  Enhanced Gene and siRNA Delivery by Polycation-Modified Mesoporous Silica Nanoparticles Loaded with Chloroquine , 2010, Pharmaceutical Research.

[129]  Jun Liu,et al.  Interfacially controlled synthesis of hollow mesoporous silica spheres with radially oriented pore structures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[130]  Fengxi Chen,et al.  Synthesis of MCM-48 Using Mixed Cationic−Anionic Surfactants as Templates , 1997 .

[131]  Jianfeng Chen,et al.  Fabrication of porous hollow silica nanoparticles and their applications in drug release control. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[132]  G. Lu,et al.  Periodic mesoporous organosilica hollow spheres with tunable wall thickness. , 2006, Journal of the American Chemical Society.

[133]  Juan L. Vivero-Escoto,et al.  Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. , 2009, Journal of the American Chemical Society.

[134]  Robert Langer,et al.  The biocompatibility of mesoporous silicates. , 2008, Biomaterials.

[135]  Ying Wan,et al.  On the controllable soft-templating approach to mesoporous silicates. , 2007, Chemical reviews.

[136]  P. Choyke,et al.  Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. , 2008, Nanomedicine.

[137]  V. S. Lin,et al.  Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. , 2009, Journal of the American Chemical Society.

[138]  Cheuk Y. Tang,et al.  Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. , 2008, Nano letters.

[139]  Samir Mitragotri,et al.  Role of target geometry in phagocytosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[140]  G. Lu,et al.  Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release , 2009 .

[141]  S. Jeong,et al.  pH-Tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. , 2011, Angewandte Chemie.

[142]  Chen Chang,et al.  Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous , 2006 .

[143]  D. Crommelin,et al.  Steric stabilization of poly(2‐(dimethylamino)ethyl methacrylate)‐based polyplexes mediates prolonged circulation and tumor targeting in mice , 2004, The journal of gene medicine.

[144]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[145]  Courtney R. Thomas,et al.  Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. , 2011, Small.

[146]  Roberta Friedman Nano dot technology enters clinical trials. , 2011, Journal of the National Cancer Institute.

[147]  Jeffrey I. Zink,et al.  Photo-Driven Expulsion of Molecules from Mesostructured Silica Nanoparticles , 2007 .

[148]  Dong Chen,et al.  Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. , 2011, Angewandte Chemie.

[149]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[150]  Yanli Wang,et al.  Dynamic self-assembly synthesis and controlled release as drug vehicles of porous hollow silica nanoparticles , 2011 .

[151]  Jianlin Shi,et al.  The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. , 2010, Biomaterials.

[152]  Samir Mitragotri,et al.  Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[153]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[154]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[155]  P. Chu,et al.  Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. , 2011, Biomaterials.

[156]  Chung-Yuan Mou,et al.  Structural and morphological control of cationic surfactant-templated mesoporous silica. , 2002, Accounts of chemical research.

[157]  S. Bensamoun,et al.  Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. , 2010, Biomaterials.

[158]  Mark B. Carter,et al.  Erratum: The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers (Nature Materials (2011) 10 (389-397)) , 2011 .

[159]  G. Lu,et al.  Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. , 2012, Biomaterials.

[160]  C. Yeh,et al.  Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. , 2011, Biomaterials.

[161]  Hyesung Jeon,et al.  Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. , 2011, ACS nano.

[162]  R. Martínez‐Máñez,et al.  Controlled delivery using oligonucleotide-capped mesoporous silica nanoparticles. , 2010, Angewandte Chemie.

[163]  M. Vallet‐Regí,et al.  Osteostatin-loaded bioceramics stimulate osteoblastic growth and differentiation. , 2010, Acta biomaterialia.

[164]  Yahong Zhang,et al.  General Method for the Fabrication of Hollow Microcapsules with Adjustable Shell Compositions , 2005 .

[165]  Masahiro Fujiwara,et al.  Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica , 2003, Nature.

[166]  Min Zhu,et al.  The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid , 2010 .

[167]  Monty Liong,et al.  Mesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells , 2007, Nanobiotechnology : the journal at the intersection of nanotechnology, molecular biology, and biomedical sciences.

[168]  Soyoung Lee,et al.  The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. , 2011, Biomaterials.

[169]  Yufang Zhu,et al.  Rattle-type Fe(3)O(4)@SiO(2) hollow mesoporous spheres as carriers for drug delivery. , 2010, Small.

[170]  C. Barbé,et al.  Silica Particles: A Novel Drug‐Delivery System , 2004 .

[171]  Jeffrey I Zink,et al.  Light-activated nanoimpeller-controlled drug release in cancer cells. , 2008, Small.

[172]  Ou Chen,et al.  Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. , 2011, Angewandte Chemie.

[173]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[174]  Edmond Magner,et al.  Proteins in mesoporous silicates. , 2008, Angewandte Chemie.

[175]  T. Ishida,et al.  Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[176]  Dongsheng Xu,et al.  Formation of Yolk/SiO(2) shell structures using surfactant mixtures as template. , 2009, Journal of the American Chemical Society.

[177]  Jianhua Hu,et al.  Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release , 2009 .

[178]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. , 2009, Small.

[179]  M. Vallet‐Regí,et al.  Influence of pore size of MCM-41 matrices on drug delivery rate , 2004 .

[180]  Chen Chang,et al.  High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe. , 2008, Small.

[181]  Xiaobo Li,et al.  Organosilane-assisted transformation from core-shell to yolk-shell nanocomposites , 2011 .

[182]  María Vallet-Regí,et al.  L-Trp adsorption into silica mesoporous materials to promote bone formation. , 2008, Acta biomaterialia.

[183]  L. Postovit,et al.  In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release , 2009, Nanoscale research letters.

[184]  Tierui Zhang,et al.  Permeable silica shell through surface-protected etching. , 2008, Nano letters.

[185]  A. Capobianco,et al.  Notch signalling in solid tumours: a little bit of everything but not all the time , 2011, Nature Reviews Cancer.

[186]  Yang Zhao,et al.  Templating Synthesis of Preloaded Doxorubicin in Hollow Mesoporous Silica Nanospheres for Biomedical Applications , 2010, Advanced materials.

[187]  Tian Xia,et al.  Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. , 2011, ACS nano.

[188]  A. Jemal,et al.  Global Cancer Statistics , 2011 .

[189]  Christy L Haynes,et al.  Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. , 2010, Journal of the American Chemical Society.

[190]  Kai Yang,et al.  Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. , 2010, Nature nanotechnology.

[191]  María Vallet-Regí,et al.  Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. , 2006, Chemistry.

[192]  Dong Chen,et al.  The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. , 2011, ACS nano.

[193]  Michael Dean,et al.  Tumour stem cells and drug resistance , 2005, Nature Reviews Cancer.

[194]  Fuyou Li,et al.  Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one- or two-photon process. , 2010, Journal of the American Chemical Society.

[195]  K. Kuroda,et al.  The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. , 1990 .

[196]  Zongxi Li,et al.  Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. , 2010, ACS nano.

[197]  T. Bein,et al.  pH-responsive release of acetal-linked melittin from SBA-15 mesoporous silica. , 2011, Angewandte Chemie.

[198]  Joseph M. McLellan,et al.  Facile synthesis of gold-silver nanocages with controllable pores on the surface. , 2006, Journal of the American Chemical Society.

[199]  Jia Guo,et al.  Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release , 2010 .

[200]  J. Ho,et al.  Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. , 2010, ACS nano.

[201]  R. Langer,et al.  Mechanistic studies of macromolecular drug release from macroporous polymers. I. Experiments and preliminary theory concerning completeness of drug release , 1989 .

[202]  Jinhee Choi,et al.  Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. , 2009, Toxicology in vitro : an international journal published in association with BIBRA.

[203]  Michiya Matsusaki,et al.  Enzyme-responsive release of encapsulated proteins from biodegradable hollow capsules. , 2006, Biomacromolecules.

[204]  Jianlin Shi,et al.  A mesoporous silica nanoparticulate/β-TCP/BG composite drug delivery system for osteoarticular tuberculosis therapy. , 2011, Biomaterials.

[205]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[206]  S M Moghimi,et al.  Long-circulating and target-specific nanoparticles: theory to practice. , 2001, Pharmacological reviews.

[207]  D. Discher,et al.  Shape effects of filaments versus spherical particles in flow and drug delivery. , 2007, Nature nanotechnology.

[208]  Itaru Honma,et al.  Ultrasound‐Triggered Smart Drug Release from a Poly(dimethylsiloxane)– Mesoporous Silica Composite , 2006 .

[209]  T. Bein,et al.  Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging. , 2010, Nano letters.

[210]  Jianlin Shi,et al.  Uniform Rattle‐type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained‐Release Property , 2008 .

[211]  Erkki Ruoslahti,et al.  Targeting of drugs and nanoparticles to tumors , 2010, The Journal of cell biology.

[212]  N. Halas Nanoscience under glass: the versatile chemistry of silica nanostructures. , 2008, ACS nano.

[213]  M. Andreeff,et al.  Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. , 2005, Cancer research.

[214]  Fangqiong Tang,et al.  Morphological control of mesoporous materials using inexpensive silica sources , 2005 .

[215]  Emmanuel P. Giannelis,et al.  Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell , 2010 .

[216]  V. S. Lin,et al.  Tuning of particle morphology and pore properties in mesoporous silicas with multiple organic functional groups. , 2003, Chemical communications.

[217]  Mauro Ferrari,et al.  Seven challenges for nanomedicine. , 2008, Nature nanotechnology.

[218]  H. Gu,et al.  Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[219]  Vincent M. Rotello,et al.  Tuning Payload Delivery in Tumour Cylindroids using Gold Nanoparticles , 2010, Nature nanotechnology.

[220]  G. van Tendeloo,et al.  Designed Multifunctional Nanocomposites for Biomedical Applications , 2010 .

[221]  M. Fujiwara,et al.  Silica hollow spheres with nano-macroholes like diatomaceous earth. , 2006, Nano letters.

[222]  T. Asefa,et al.  Mesoporous silica nanoparticles inhibit cellular respiration. , 2008, Nano letters.

[223]  Tao Wu,et al.  Tunable redox-responsive hybrid nanogated ensembles. , 2008, Journal of the American Chemical Society.

[224]  Mark E. Davis,et al.  Nanoparticle therapeutics: an emerging treatment modality for cancer , 2008, Nature Reviews Drug Discovery.

[225]  J. Michaelis,et al.  Nanostructured silica materials as drug-delivery systems for Doxorubicin: single molecule and cellular studies. , 2009, Nano letters.

[226]  YanagisawaTsuneo,et al.  The Preparation of Alkyltriinethylaininonium–Kaneinite Complexes and Their Conversion to Microporous Materials , 2006 .

[227]  Chin-Tu Chen,et al.  Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. , 2010, Biomaterials.

[228]  Y. Assaraf,et al.  Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. , 2011, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[229]  Chulhee Kim,et al.  Glutathione‐Induced Intracellular Release of Guests from Mesoporous Silica Nanocontainers with Cyclodextrin Gatekeepers , 2010, Advanced materials.

[230]  V. S. Lin,et al.  Mesoporous silica nanoparticles deliver DNA and chemicals into plants. , 2007, Nature nanotechnology.

[231]  Huajian Gao,et al.  Mechanics of receptor-mediated endocytosis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[232]  Yufang Zhu,et al.  Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. , 2005, Angewandte Chemie.

[233]  Taeghwan Hyeon,et al.  Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. , 2010, Journal of the American Chemical Society.

[234]  J. F. Stoddart,et al.  pH clock-operated mechanized nanoparticles. , 2009, Journal of the American Chemical Society.

[235]  Christy L. Haynes,et al.  Functional assessment of metal oxide nanoparticle toxicity in immune cells. , 2010, ACS nano.

[236]  Jun Liu,et al.  A new class of silica cross-linked micellar core-shell nanoparticles. , 2006, Journal of the American Chemical Society.

[237]  Huang-Hao Yang,et al.  An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates , 2009 .

[238]  L. Nazar,et al.  Strategic synthesis of SBA-15 nanorods. , 2008, Chemical communications.

[239]  Chung-Yuan Mou,et al.  Synthesis of hollow silica nanospheres with a microemulsion as the template. , 2009, Chemical communications.

[240]  Victor S-Y Lin,et al.  A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. , 2004, Journal of the American Chemical Society.

[241]  Dongsheng Xu,et al.  Soft Template Synthesis of Yolk/Silica Shell particles , 2010, Advanced materials.

[242]  C. Brinker,et al.  Aerosol fabrication of hollow mesoporous silica nanoparticles and encapsulation of L-methionine as a candidate drug cargo. , 2010, Chemical communications.

[243]  G. Lu,et al.  Hydrophobic Functional Group Initiated Helical Mesostructured Silica for Controlled Drug Release , 2008 .

[244]  A. Haes,et al.  Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. , 2008, Journal of the American Chemical Society.

[245]  Xing-hong Zhang,et al.  One-pot preparation of hollow silica spheres by using thermosensitive poly(N-isopropylacrylamide) as a reversible template. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[246]  Amir Abdollahi,et al.  Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. , 2010, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[247]  Chin-Tu Chen,et al.  Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics—the trio of imaging, targeting and therapy , 2010 .

[248]  R. Martínez‐Máñez,et al.  Enzyme-responsive controlled release using mesoporous silica supports capped with lactose. , 2009, Angewandte Chemie.

[249]  J. Fei,et al.  Lipid coated mesoporous silica nanoparticles as photosensitive drug carriers. , 2010, Physical chemistry chemical physics : PCCP.

[250]  Seong Huh,et al.  Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method , 2003 .

[251]  Z. Su,et al.  Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy , 2011 .

[252]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[253]  Shiyong Liu,et al.  Fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[254]  J. Ying,et al.  Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures. , 2004, Angewandte Chemie.

[255]  P. Magusin,et al.  Hollow silica spheres with an ordered pore structure and their application in controlled release studies. , 2006, Chemistry.

[256]  Jianfeng Chen,et al.  Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. , 2004, Biomaterials.

[257]  Jian Liu,et al.  Organic−Inorganic Hybrid Hollow Nanospheres with Microwindows on the Shell , 2008 .