A colorimetric method to measure in vitro nitrogenase functionality for engineering nitrogen fixation

[1]  J. W. Peters,et al.  Metabolic Model of the Nitrogen-Fixing Obligate Aerobe Azotobacter vinelandii Predicts Its Adaptation to Oxygen Concentration and Metal Availability , 2021, mBio.

[2]  M. Bennett,et al.  Resource Allocation During the Transition to Diazotrophy in Klebsiella oxytoca , 2021, Frontiers in Microbiology.

[3]  Stefan Burén,et al.  Analysis of Nitrogenase Fe Protein Activity in Transplastomic Tobacco , 2021, Frontiers in Agronomy.

[4]  P. Poole,et al.  A Simple in situ Assay to Assess Plant-Associative Bacterial Nitrogenase Activity , 2021, Frontiers in Microbiology.

[5]  Stefan Burén,et al.  Biosynthesis of cofactor‐activatable iron‐only nitrogenase in Saccharomyces cerevisiae , 2021, Microbial biotechnology.

[6]  I. García-Rubio,et al.  Exploiting genetic diversity and gene synthesis to identify superior nitrogenase NifH protein variants to engineer N2-fixation in plants , 2021, Communications biology.

[7]  Silvio C. E. Tosatto,et al.  Pfam: The protein families database in 2021 , 2020, Nucleic Acids Res..

[8]  F.‐S. Liang nitrogenase , 2020, Catalysis from A to Z.

[9]  L. Seefeldt,et al.  Reduction of Substrates by Nitrogenases. , 2020, Chemical reviews.

[10]  E. Caro,et al.  Use of synthetic biology tools to optimize the production of active nitrogenase Fe protein in chloroplasts of tobacco leaf cells , 2020, Plant biotechnology journal.

[11]  Stefan Burén,et al.  Biosynthesis of Nitrogenase Cofactors , 2020, Chemical reviews.

[12]  Francesco Licausi,et al.  Molecular oxygen as a signaling component in plant development. , 2020, The New phytologist.

[13]  Christopher A. Voigt,et al.  Biosynthesis of the nitrogenase active-site cofactor precursor NifB-co in Saccharomyces cerevisiae , 2019, Proceedings of the National Academy of Sciences.

[14]  T. L. Liu,et al.  An Efficient Viologen-Based Electron Donor to Nitrogenase. , 2019, Biochemistry.

[15]  M. Friesen,et al.  Optimization of the 15N2 incorporation and acetylene reduction methods for free-living nitrogen fixation , 2019, Plant and Soil.

[16]  Ray Dixon,et al.  Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology , 2018, Proceedings of the National Academy of Sciences.

[17]  J. W. Peters,et al.  Exploring the alternatives of biological nitrogen fixation. , 2018, Metallomics : integrated biometal science.

[18]  Stefan Burén,et al.  State of the art in eukaryotic nitrogenase engineering , 2017, FEMS microbiology letters.

[19]  Stefan Burén,et al.  Purification and In Vitro Activity of Mitochondria Targeted Nitrogenase Cofactor Maturase NifB , 2017, Front. Plant Sci..

[20]  Andrew K. Udit,et al.  Electrochemical and structural characterization of Azotobacter vinelandii flavodoxin II , 2017, Protein science : a publication of the Protein Society.

[21]  J. W. Peters,et al.  The Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis. , 2017, Biochemistry.

[22]  Christopher A. Voigt,et al.  Formation of Nitrogenase NifDK Tetramers in the Mitochondria of Saccharomyces cerevisiae , 2017, ACS synthetic biology.

[23]  R. Dixon,et al.  Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity , 2017, Proceedings of the National Academy of Sciences.

[24]  L. M. Rubio,et al.  Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast , 2016, Nature Communications.

[25]  P. Chalk The strategic role of 15N in quantifying the contribution of endophytic N2 fixation to the N nutrition of non-legumes , 2016, Symbiosis.

[26]  Allison M. Leach,et al.  Nitrogen: too much of a vital resource , 2015 .

[27]  Essi V. Koskela,et al.  Homologous Recombinatorial Cloning Without the Creation of Single-Stranded Ends: Exonuclease and Ligation-Independent Cloning (ELIC) , 2015, Molecular Biotechnology.

[28]  Swapnil Bhatia,et al.  Functional optimization of gene clusters by combinatorial design and assembly , 2014, Nature Biotechnology.

[29]  R. Dixon,et al.  Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli , 2014, Proceedings of the National Academy of Sciences.

[30]  L. Curatti,et al.  Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. , 2014, Plant science : an international journal of experimental plant biology.

[31]  R. Dixon,et al.  Biotechnological solutions to the nitrogen problem. , 2014, Current opinion in biotechnology.

[32]  Carlos Echavarri-Erasun,et al.  Kinetics of nif Gene Expression in a Nitrogen-Fixing Bacterium , 2013, Journal of bacteriology.

[33]  J. Xie,et al.  A Minimal Nitrogen Fixation Gene Cluster from Paenibacillus sp. WLY78 Enables Expression of Active Nitrogenase in Escherichia coli , 2013, PLoS genetics.

[34]  Ray Dixon,et al.  Using Synthetic Biology to Distinguish and Overcome Regulatory and Functional Barriers Related to Nitrogen Fixation , 2013, PloS one.

[35]  Christopher A. Voigt,et al.  Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca , 2012, Proceedings of the National Academy of Sciences.

[36]  L. Seefeldt,et al.  Electron transfer in nitrogenase catalysis. , 2012, Current opinion in chemical biology.

[37]  N. Pfanner,et al.  Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability , 2009, Cell.

[38]  Robert H Schiestl,et al.  Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method , 2007, Nature Protocols.

[39]  L. Pulakat,et al.  Peptidyl-Prolyl cis/trans Isomerase-Independent Functional NifH Mutant of Azotobacter vinelandii , 2006, Journal of bacteriology.

[40]  F. Chapin,et al.  Principles of Terrestrial Ecosystem Ecology , 2002, Springer New York.

[41]  P. Venkov,et al.  Dimerization of Rhizobium meliloti NifH protein in Saccharomyces cerevisiae cells requires simultaneous expression of NifM protein. , 2002, The international journal of biochemistry & cell biology.

[42]  W. Neupert,et al.  Mitochondria‐targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae , 2000, Yeast.

[43]  K. Chen,et al.  Alteration of the Reduction Potential of the [4Fe-4S]2+/+ Cluster of Azotobacter vinelandii Ferredoxin I* , 1999, The Journal of Biological Chemistry.

[44]  D. Rees,et al.  Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. , 1992, Science.

[45]  H. Hill,et al.  Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. , 1988, Analytical biochemistry.

[46]  R. Thorneley,et al.  Electron transfer to nitrogenase. Characterization of flavodoxin from Azotobacter chroococcum and comparison of its redox potentials with those of flavodoxins from Azotobacter vinelandii and Klebsiella pneumoniae (nifF-gene product). , 1986, The Biochemical journal.

[47]  W. Orme-Johnson,et al.  Klebsiella pneumoniae nifM gene product is required for stabilization and activation of nitrogenase iron protein in Escherichia coli. , 1986, The Journal of biological chemistry.

[48]  F. B. Simpson,et al.  A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. , 1984, Science.

[49]  J. L. Corbin Liquid Chromatographic-Fluorescence Determination of Ammonia from Nitrogenase Reactions: A 2-Min Assay , 1984, Applied and environmental microbiology.

[50]  W. Brill,et al.  Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae , 1978, Journal of bacteriology.

[51]  S. Mayhew The redox potential of dithionite and SO-2 from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase. , 1978, European journal of biochemistry.

[52]  W. Brill,et al.  Nitrogenase. IV. Simple method of purification to homogeneity of nitrogenase components from Azotobacter vinelandii. , 1973, Biochimica et biophysica acta.

[53]  J. Postgate,et al.  Nitrogenase of Klebsiella pneumoniae. Purification and properties of the component proteins. , 1972, The Biochemical journal.

[54]  R. Burris,et al.  In situ studies on N2 fixation using the acetylene reduction technique. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Dilworth Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. , 1966, Biochimica et biophysica acta.

[56]  W. A. Bulen,et al.  The nitrogenase system from Azotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis. , 1966, Proceedings of the National Academy of Sciences of the United States of America.