Quantum automorphism groups of small metric spaces

To any ?nite metric space X we associate the universal Hopf C*-algebra H coacting on X. We prove that spaces X having at most 7 points fall into one of the following classes: (1) the coaction of H is not transitive; (2) H is the algebra of functions on the automorphism group of X; (3) X is a simplex and H corresponds to a Temperley?Lieb algebra; (4) X is a product of simplices and H corresponds to a Fuss?Catalan algebra.

[1]  V. Jones,et al.  Singly generated planar algebras of small dimension, Part II , 2003 .

[2]  Zeph Landau Exchange Relation Planar Algebras , 2002 .

[3]  B. Bhattacharyya A note on intermediate subfactors of Krishnan-Sunder subfactors , 2002, math/0211015.

[4]  V. Sunder,et al.  Planar Depth and Planar Subalgebras , 2002 .

[5]  T. Banica The planar algebra of a coaction , 2002, math/0207035.

[6]  M. Rieffel Gromov-Hausdorff Distance for Quantum Metric Spaces , 2000, math/0011063.

[7]  T. Banica Quantum Groups and Fuss--Catalan Algebras , 2000, math/0010084.

[8]  V. Jones The Planar Algebra of a bipartite graph , 2000 .

[9]  V. Jones,et al.  Singly generated planar algebras of small dimension , 2000 .

[10]  Shuzhou Wang,et al.  Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.

[11]  Vaughan F. R. Jones,et al.  Algebras associated to intermediate subfactors , 1997 .

[12]  A. Sitarz,et al.  Discrete spectral triples and their symmetries , 1996, q-alg/9612029.

[13]  A. Connes,et al.  Gravity coupled with matter and the foundation of non-commutative geometry , 1996, hep-th/9603053.

[14]  Shuzhou Wang,et al.  Free products of compact quantum groups , 1995 .

[15]  S. Woronowicz,et al.  Tannaka-Krein duality for compact matrix pseudogroups. TwistedSU(N) groups , 1988 .

[16]  S. Woronowicz,et al.  Compact matrix pseudogroups , 1987 .

[17]  S. Woronowicz Compact quantum groups , 2000 .

[18]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[19]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[20]  T. Banica Institute for Mathematical Physics Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares , 2022 .