Upward planar drawings on the standing and the rolling cylinders

We consider directed graphs with an upward planar drawing on the standing and the rolling cylinders. These graphs properly extend the upward planar graphs in the plane. The drawings allow complex curves for the edges with many zig-zags and windings around the cylinder. We show that the drawings can be simplified to polyline drawings with geodesics as straight segments, at most two bends per edge, and vertices and bends on a grid of at most cubic size. On the standing cylinder the edges do not wind and they wind at most once around the rolling cylinder, where single windings can be unavoidable. The simplifications can be computed efficiently in O(@tn^3) time, where @t is the cost of computing the point of intersection of a curve and a horizontal line through a vertex. Moreover, we provide a complete classification of the classes of (regular) upward planar drawable graphs on the plane, the sphere, and the standing and rolling cylinders including their strict and weak variants. Strict is upward in two dimensions and weak allows horizontal lines. For upward planarity the standing and the rolling cylinders coincide in the strict case, rolling dominates standing in the regular case, and there is an incomparability in the weak case. The respective classes of graphs range properly between the upward planar and the quasi-upward planar graphs, and they have an NP-hard recognition problem.

[1]  Bojan Mohar,et al.  Tessellation and Visibility Representations of Maps on the Torus , 1998, Discret. Comput. Geom..

[2]  G. Battista,et al.  Hierarchies and planarity theory , 1988, IEEE Trans. Syst. Man Cybern..

[3]  Ioannis G. Tollis,et al.  Representations of Graphs on a Cylinder , 1991, SIAM J. Discret. Math..

[4]  S. Mehdi Hashemi Digraph embedding , 2001, Discret. Math..

[5]  David Kelly Fundamentals of planar ordered sets , 1987, Discret. Math..

[6]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[7]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[8]  Jorge Urrutia,et al.  Light sources, obstructions and spherical orders , 1992, Discret. Math..

[9]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  K. Wagner Bemerkungen zum Vierfarbenproblem. , 1936 .

[11]  Meena Mahajan,et al.  Upper Bounds for Monotone Planar Circuit Value and Variants , 2009, computational complexity.

[12]  Andreas Gleißner,et al.  Characterizations of Deque and Queue Graphs , 2011, WG.

[13]  Ioannis G. Tollis,et al.  Area requirement and symmetry display of planar upward drawings , 1992, Discret. Comput. Geom..

[14]  Franz-Josef Brandenburg On the Curve Complexity of Upward Planar Drawings , 2012, CATS.

[15]  Walter Didimo,et al.  Quasi-Upward Planarity , 1998, Algorithmica.

[16]  Christian Bachmaier,et al.  The Duals of Upward Planar Graphs on Cylinders , 2012, WG.

[17]  Christian Bachmaier,et al.  Linear Time Planarity Testing and Embedding of Strongly Connected Cyclic Level Graphs , 2008, ESA.

[18]  Ardeshir Dolati,et al.  On the Upward Embedding on the Torus , 2008 .

[19]  Christian Bachmaier,et al.  Classification of Planar Upward Embedding , 2011, Graph Drawing.

[20]  E. Steinitz,et al.  Vorlesungen über die Theorie der Polyeder unter Einfluss der Elemente der Topologie , 1934 .

[21]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[22]  H. S. M. Coxeter,et al.  Vorlesungen über die Theorie der Polyeder , 1935 .

[23]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[24]  Meena Mahajan,et al.  Evaluating Monotone Circuits on Cylinders, Planes and Tori , 2006, STACS.

[25]  Carlo Mannino,et al.  Upward drawings of triconnected digraphs , 2005, Algorithmica.

[26]  Christian Bachmaier,et al.  Plane Drawings of Queue and Deque Graphs , 2010, Graph Drawing.

[27]  Christian Bachmaier,et al.  Drawing Recurrent Hierarchies , 2012, J. Graph Algorithms Appl..

[28]  Ardeshir Dolati,et al.  On the sphericity testing of single source digraphs , 2008, Discret. Math..

[29]  Christian Bachmaier,et al.  Coordinate Assignment for Cyclic Level Graphs , 2009, COCOON.

[30]  Roberto Tamassia,et al.  Algorithms for Plane Representations of Acyclic Digraphs , 1988, Theor. Comput. Sci..

[31]  Ulrik Brandes,et al.  Fast and Simple Horizontal Coordinate Assignment , 2001, GD.

[32]  Ivan Rival,et al.  Order, genus, and diagram invariance , 1991 .

[33]  Christian Bachmaier,et al.  Cyclic Level Planarity Testing and Embedding , 2007, Graph Drawing.

[34]  David P. Dobkin,et al.  Implementing a General-Purpose Edge Router , 1997, Graph Drawing.

[35]  Lenwood S. Heath,et al.  Recognizing Leveled-Planar Dags in Linear Time , 1995, Graph Drawing.

[36]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[37]  Christian Bachmaier,et al.  A Radial Adaptation of the Sugiyama Framework for Visualizing Hierarchical Information , 2007, IEEE Transactions on Visualization and Computer Graphics.

[38]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[39]  Carlo Mannino,et al.  Optimal Upward Planarity Testing of Single-Source Digraphs , 1998, SIAM J. Comput..

[40]  Andrzej Kisielewicz,et al.  The Complexity of Upward Drawings on Spheres , 1997 .