Modeling chaotic motions of a string from experimental data

Abstract Experimental measurements of nonlinear vibrations of a string are analyzed using new techniques of nonlinear modeling. Previous theoretical and numerical work suggested that the motions of a string can be chaotic and a Shil'nikov mechanism is responsible. We show that the experimental data is consistent with a Shil'nikov mechanism. We also reveal a period doubling cascade with a period three window which is not immediately observable because there is sufficient noise, probably of a dynamical origin, to mask the period-doubling bifurcation and the period three window.