Computation Width and Deviation Number

The computation width (a.k.a. tree width, a.k.a. leaf size) of a nondeterministic finite automaton (NFA) A counts the number of branches in the computation tree of A on a given input. The deviation number of A on a given input counts the number of nondeterministic paths that branch out from the best accepting computation. Deviation number is a best-case nondeterminism measure closely related to the guessing measure of Goldstine, Kintala and Wotschke (Infrom. Comput. 86, 1990, 179–194). We consider the descriptional complexity of NFAs with similar given deviation number and with computation width.

[1]  Henrik Björklund,et al.  The Tractability Frontier for NFA Minimization , 2008, ICALP.

[2]  Selim G. Akl,et al.  Lower Bound for Converting an NFA with Finite Nondeterminism into an MDFA , 2014, J. Autom. Lang. Comb..

[3]  Jeffrey Shallit,et al.  A Second Course in Formal Languages and Automata Theory , 2008 .

[4]  Hing Leung On finite automata with limited nondeterminism , 1998, Acta Informatica.

[5]  Jean-Camille Birget,et al.  Intersection and Union of Regular Languages and State Complexity , 1992, Inf. Process. Lett..

[6]  Jonathan Goldstine,et al.  On Measuring Nondeterminism in Regular Languages , 1990, Inf. Comput..

[7]  Martin Kutrib,et al.  Recent Trends in Descriptional Complexity of Formal Languages , 2013, Bull. EATCS.

[8]  Selim G. Akl,et al.  Comparisons between Measures of Nondeterminism on Finite Automata , 2013, DCFS.

[9]  Hing Leung Separating Exponentially Ambiguous Finite Automata from Polynomially Ambiguous Finite Automata , 1998, SIAM J. Comput..

[10]  Lawrence T. Kou,et al.  Multiple-Entry Finite Automata , 1974, J. Comput. Syst. Sci..

[11]  Sheng Yu,et al.  On the State Complexity of k-Entry Deterministic Finite Automata , 2001, J. Autom. Lang. Comb..

[12]  Hartmut Klauck,et al.  Communication Complexity Method for Measuring Nondeterminism in Finite Automata , 2002, Inf. Comput..

[13]  Alexander Okhotin,et al.  Descriptional Complexity of Formal Systems , 2016, Theor. Comput. Sci..

[14]  Selim G. Akl,et al.  State Complexity of Finite Tree Width NFAs , 2012, J. Autom. Lang. Comb..

[15]  Andreas Malcher,et al.  Descriptional Complexity of Machines with Limited Resources , 2002, J. Univers. Comput. Sci..