A novel algorithm for the global solution of mixed-integer bi-level multi-follower problems and its application to Planning & Scheduling integration

Optimization problems involving a leader decision maker with multiple follower decision makers are referred to as bi-level multi-follower programming problems (BMF-P). In this work, we present novel algorithms for the exact and global solution of two classes of bi-level programming problems, namely (i) bi-level multi-follower mixed-integer linear programming problems (BMF-MILP) and (ii) bi-level multi-follower mixed-integer convex quadratic programming problems (BMF-MIQP) containing both integer and continuous variables at all optimization levels. Based on multi-parametric programming theory, the main idea is to recast the lower level, follower, problems as multi-parametric programming problems, in which the optimization variables of the upper level, leader, problem are considered as parameters for the lower level problems. The resulting exact multi-parametric mixed-integer linear or quadratic solutions are then substituted into the upper level problem, which can be solved as a set of single-level, independent, deterministic mixed-integer optimization problems. The proposed algorithm is applied for the solution of the challenging problem of planning and scheduling integration.

[1]  Dragan Miljkovic Privatizing state farms in Yugoslavia , 2002 .

[2]  Christodoulos A. Floudas,et al.  Analyzing the interaction of design and control—1. A multiobjective framework and application to binary distillation synthesis , 1994 .

[3]  Hui-Ming Wee,et al.  Particle swarm optimization for bi-level pricing problems in supply chains , 2011, J. Glob. Optim..

[4]  Kalyanmoy Deb,et al.  Finding optimal strategies in a multi-period multi-leader-follower Stackelberg game using an evolutionary algorithm , 2013, Comput. Oper. Res..

[5]  Christodoulos A. Floudas,et al.  Global optimization of mixed-integer bilevel programming problems , 2005, Comput. Manag. Sci..

[6]  Efstratios N. Pistikopoulos,et al.  Explicit hybrid model-predictive control: The exact solution , 2015, Autom..

[7]  Jie Lu,et al.  The Kth-Best Approach for Linear Bilevel Multi-follower Programming , 2005, J. Glob. Optim..

[8]  Colin Neil Jones,et al.  Lexicographic perturbation for multiparametric linear programming with applications to control , 2007, Autom..

[9]  Herminia I. Calvete,et al.  Bilevel model for production-distribution planning solved by using ant colony optimization , 2011, Comput. Oper. Res..

[10]  Xiaotie Deng,et al.  Complexity Issues in Bilevel Linear Programming , 1998 .

[11]  Efstratios N. Pistikopoulos,et al.  A Multiparametric Mixed-integer Bi-level Optimization Strategy for Supply Chain Planning Under Demand Uncertainty , 2017 .

[12]  Hong Zhou,et al.  The Kth-best approach for linear bilevel multifollower programming with partial shared variables among followers , 2007, Appl. Math. Comput..

[13]  Jesuk Ko,et al.  A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling , 2003, Comput. Oper. Res..

[14]  Efstratios N. Pistikopoulos,et al.  Proactive Scheduling under Uncertainty : A Parametric Optimization Approach , 2007 .

[15]  Berç Rustem,et al.  Parametric global optimisation for bilevel programming , 2007, J. Glob. Optim..

[16]  Efstratios N. Pistikopoulos,et al.  On multi-parametric programming and its applications in process systems engineering , 2016 .

[17]  M. L. Luyben,et al.  Analyzing the interaction of design and control—2. reactor-separator-recycle system , 1994 .

[18]  Da Ruan,et al.  An Extended Branch and Bound Algorithm for bilevel Multi-Follower Decision Making in a Referential-Uncooperative Situation , 2007, Int. J. Inf. Technol. Decis. Mak..

[19]  David D. Brengel,et al.  Coordinated design and control optimization of nonlinear processes , 1992 .

[20]  Tharam S. Dillon,et al.  Model and extended Kuhn–Tucker approach for bilevel multi-follower decision making in a referential-uncooperative situation , 2007, J. Glob. Optim..

[21]  Marianthi G. Ierapetritou,et al.  Resolution method for mixed integer bi-level linear problems based on decomposition technique , 2009, J. Glob. Optim..

[22]  Zukui Li,et al.  Integrated production planning and scheduling using a decomposition framework , 2009 .

[23]  William H. K. Lam,et al.  BALANCE OF CAR OWNERSHIP UNDER USER DEMAND AND ROAD NETWORK SUPPLY CONDITIONS: CASE STUDY IN HONG KONG , 2004 .

[24]  Berç Rustem,et al.  A multi-parametric programming approach for multilevel hierarchical and decentralised optimisation problems , 2009, Comput. Manag. Sci..

[25]  Sun Hur,et al.  Integrated process planning and scheduling with minimizing total tardiness in multi-plants supply chain , 2002 .

[26]  T. Gál,et al.  Multiparametric Linear Programming , 1972 .

[27]  David E. Boyce,et al.  Modeling residential location choice in relation to housing location and road tolls on congested urban highway networks , 1999 .

[28]  Ignacio E. Grossmann,et al.  Enterprise‐wide optimization: A new frontier in process systems engineering , 2005 .

[29]  Efstratios N. Pistikopoulos,et al.  On unbounded and binary parameters in multi-parametric programming: applications to mixed-integer bilevel optimization and duality theory , 2017, J. Glob. Optim..

[30]  Panos Seferlis,et al.  A two-layered optimisation-based control strategy for multi-echelon supply chain networks , 2003 .

[31]  Athanasios Migdalas,et al.  Bilevel programming in traffic planning: Models, methods and challenge , 1995, J. Glob. Optim..

[32]  Costas D. Maranas,et al.  Multiperiod Planning and Scheduling of Multiproduct Batch Plants under Demand Uncertainty , 1997 .

[33]  E. Pistikopoulos,et al.  POP – Parametric Optimization Toolbox , 2016 .

[34]  Efstratios N. Pistikopoulos,et al.  A multi-parametric bi-level optimization strategy for hierarchical model predictive control , 2017 .

[35]  I. Grossmann,et al.  A Decomposition Method for the Simultaneous Planning and Scheduling of Single-Stage Continuous Multiproduct Plants , 2006 .

[36]  Alexander Mitsos,et al.  Global solution of nonlinear mixed-integer bilevel programs , 2010, J. Glob. Optim..

[37]  Efstratios N. Pistikopoulos,et al.  A bilevel programming framework for enterprise-wide process networks under uncertainty , 2004, Comput. Chem. Eng..

[38]  Brian J. Lunday,et al.  A bilevel formulation of the pediatric vaccine pricing problem , 2016, Eur. J. Oper. Res..

[39]  Ichiro Nishizaki,et al.  COMPUTATIONAL METHODS THROUGH GENETIC ALGORITHMS FOR OBTAINING STACKELBERG SOLUTIONS TO TWO-LEVEL INTEGER PROGRAMMING PROBLEMS , 2005, Cybern. Syst..

[40]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[41]  E. Pistikopoulos,et al.  Mixed Integer Bilevel Optimization through Multi-parametric Programming , 2016 .

[42]  Efstratios N. Pistikopoulos,et al.  A branch and bound method for the solution of multiparametric mixed integer linear programming problems , 2014, J. Glob. Optim..

[43]  Hai Yang,et al.  Traffic assignment and signal control in saturated road networks , 1995 .

[44]  L. Biegler,et al.  A nested, simultaneous approach for dynamic optimization problems—I , 1996 .