Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator

Topological phases in frustrated quantum spin systems have fascinated researchers for decades. One of the earliest proposals for such a phase was the chiral spin liquid, a bosonic analogue of the fractional quantum Hall effect, put forward by Kalmeyer and Laughlin in 1987. Elusive for many years, recent times have finally seen this phase realized in various models, which, however, remain somewhat artificial. Here we take an important step towards the goal of finding a chiral spin liquid in nature by examining a physically motivated model for a Mott insulator on the Kagome lattice with broken time-reversal symmetry. We discuss the emergent phase from a network model perspective and present an unambiguous numerical identification and characterization of its universal topological properties, including ground-state degeneracy, edge physics and anyonic bulk excitations, by using a variety of powerful numerical probes, including the entanglement spectrum and modular transformations.

[1]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[2]  Frank Wilczek,et al.  Quantum Mechanics of Fractional-Spin Particles , 1982 .

[3]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[4]  Xiao-Gang Wen,et al.  High-temperature fractional quantum Hall states. , 2010, Physical review letters.

[5]  S. Fujimoto,et al.  Thermal-transport measurements in a quantum spin-liquid state of the frustrated triangular magnet -(BEDT-TTF) 2 Cu 2 (CN) 3 , 2009 .

[6]  N. Regnault,et al.  Bulk-edge correspondence in entanglement spectra , 2011, 1102.2218.

[7]  White,et al.  Real-space quantum renormalization groups. , 1992, Physical review letters.

[8]  Wei Zhu,et al.  Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model , 2013, Scientific Reports.

[9]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[10]  Wen,et al.  Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. , 1990, Physical review. B, Condensed matter.

[11]  J. Cirac,et al.  Local models of fractional quantum Hall states in lattices and physical implementation , 2013, Nature Communications.

[12]  J. García-Ripoll,et al.  Chiral entanglement in triangular lattice models , 2007, 0706.3612.

[13]  Robert B. Laughlin,et al.  Quantized Hall conductivity in two-dimensions , 1981 .

[14]  Hong Yao,et al.  Exact chiral spin liquid with non-Abelian anyons. , 2007, Physical review letters.

[15]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[16]  Zhenghan Wang,et al.  On Classification of Modular Tensor Categories , 2007, 0712.1377.

[17]  J. Marston,et al.  Spin‐Peierls and spin‐liquid phases of Kagomé quantum antiferromagnets , 1991 .

[18]  B. Halperin Theory of the quantized Hall conductance , 1983 .

[19]  D. Sheng,et al.  Chiral spin liquid in a frustrated anisotropic kagome Heisenberg model. , 2013, Physical review letters.

[20]  F. Becca,et al.  Projected wave function study of Z 2 spin liquids on the kagome lattice for the spin- 1 2 quantum Heisenberg antiferromagnet , 2011, 1105.0341.

[21]  S. Murakami,et al.  Spin Anisotropy and Quantum Hall Effect in the Kagomé Lattice : Chiral Spin State based on a Ferromagnet , 1999, cond-mat/9912206.

[22]  R. Thomale,et al.  Spin hamiltonian for which the chiral spin liquid is the exact ground state. , 2007, Physical review letters.

[23]  Steven R. White,et al.  Studying Two Dimensional Systems With the Density Matrix Renormalization Group , 2011, 1105.1374.

[24]  Garnet Kin-Lic Chan,et al.  Striped spin liquid crystal ground state instability of kagome antiferromagnets. , 2012, Physical review letters.

[25]  M. Hastings,et al.  Almost commuting matrices, localized Wannier functions, and the quantum Hall effect , 2009, 0910.5490.

[26]  F. Wilczek,et al.  Geometric and renormalized entropy in conformal field theory , 1994, hep-th/9403108.

[27]  Hui Li,et al.  Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. , 2008, Physical review letters.

[28]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[29]  A. Ludwig,et al.  General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states. , 2011, Physical review letters.

[30]  A. Ludwig,et al.  Critical theory of overscreened Kondo fixed points , 1991 .

[31]  Fisher,et al.  Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. , 1992, Physical review. B, Condensed matter.

[32]  Affleck,et al.  Magnetic impurities in half-integer-spin Heisenberg antiferromagnetic chains. , 1992, Physical review. B, Condensed matter.

[33]  Sachdev,et al.  Kagomé- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. , 1992, Physical review. B, Condensed matter.

[34]  S. Todo,et al.  The ALPS project release 2.0: open source software for strongly correlated systems , 2011, 1101.2646.

[35]  B. Swingle,et al.  Geometric proof of the equality between entanglement and edge spectra , 2011, 1109.1283.

[36]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[37]  Possible spin-liquid states on the triangular and kagomé lattices. , 1992, Physical review letters.

[38]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[39]  Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to kappa-(ET)2Cu2(CN)3 , 2005, cond-mat/0510615.

[40]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[41]  Xiao-Gang Wen,et al.  Topological Orders in Rigid States , 1990 .

[42]  Paul Coddington,et al.  Percolation, quantum tunnelling and the integer Hall effect , 1988 .

[43]  Baskaran Novel local symmetries and chiral-symmetry-broken phases in S=(1/2 triangular-lattice Heisenberg model. , 1989, Physical review letters.

[44]  Elser,et al.  Nuclear antiferromagnetism in a registered 3He solid. , 1989, Physical review letters.

[45]  M. Hermele,et al.  Topological liquids and valence cluster states in two-dimensional SU(N) magnets , 2011, 1108.3862.

[46]  Leon Balents,et al.  Identifying topological order by entanglement entropy , 2012, Nature Physics.

[47]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[48]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[49]  Yi Zhang,et al.  Quasiparticle statistics and braiding from ground state entanglement , 2011, 1111.2342.

[50]  C. Chamon,et al.  Fractional quantum Hall states at zero magnetic field. , 2010, Physical review letters.

[51]  N. Read,et al.  Edge-state inner products and real-space entanglement spectrum of trial quantum Hall states , 2012, 1207.7119.

[52]  R. Laughlin,et al.  Equivalence of the resonating-valence-bond and fractional quantum Hall states. , 1987, Physical review letters.

[53]  Simeng Yan,et al.  Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet , 2010, Science.

[54]  Hosho Katsura,et al.  Nearly flatbands with nontrivial topology. , 2010, Physical review letters.

[55]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[56]  James S. Langer,et al.  Annual review of condensed matter physics , 2010 .

[57]  A. Rey,et al.  Mott insulators of ultracold fermionic alkaline Earth atoms: underconstrained magnetism and chiral spin liquid. , 2009, Physical review letters.

[58]  L. Cincio,et al.  Characterizing topological order by studying the ground States on an infinite cylinder. , 2012, Physical review letters.

[59]  Zee,et al.  Chiral spin states and superconductivity. , 1989, Physical review. B, Condensed matter.

[60]  N. Paunkovic,et al.  Ground state overlap and quantum phase transitions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[62]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[63]  Robert Jördens,et al.  A Mott insulator of fermionic atoms in an optical lattice , 2008, Nature.