A Machine Learning Based Morphological Classification of 14,245 Radio AGNs Selected from the Best–Heckman Sample

We present a morphological classification of 14,245 radio active galactic nuclei (AGNs) into six types, i.e., typical Fanaroff--Riley Class I / II (FRI/II), FRI/II-like bent-tailed, X-shaped radio galaxy, and ringlike radio galaxy, by designing a convolutional neural network (CNN) based autoencoder, namely MCRGNet, and applying it to a labeled radio galaxy (LRG) sample containing 1442 AGNs and an unlabeled radio galaxy (unLRG) sample containing 14,245 unlabeled AGNs selected from the Best--Heckman sample. We train MCRGNet and implement the classification task by a three-step strategy, i.e., pre-training, fine-tuning, and classification, which combines both unsupervised and supervised learnings. A four-layer dichotomous tree is designed to classify the radio AGNs, which leads to a significantly better performance than the direct six-type classification. On the LRG sample, our MCRGNet achieves a total precision of $\sim 93\%$ and an averaged sensitivity of $\sim 87\%$, which are better than those obtained in previous works. On the unLRG sample, whose labels have been human-inspected, the neural network achieves a total precision of $\sim 80\%$. Also, using the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to calculate the $r$-band absolute magnitude ($M_\mathrm{opt}$) and using the flux densities to calculate the radio luminosity ($L_\mathrm{radio}$), we find that the distributions of the unLRG sources on the $L_\mathrm{radio}$--$M_\mathrm{opt}$ plane do not show an apparent redshift evolution and could confirm with a sufficiently large sample that there could not exist an abrupt separation between FRIs and FRIIs as reported in some previous works.

[1]  P. Padovani The faint radio sky: radio astronomy becomes mainstream , 2016, The Astronomy and Astrophysics Review.

[2]  J. Wall,et al.  The Combined NVSS–FIRST Galaxies (CoNFIG) sample – I. Sample definition, classification and evolution , 2008, 0808.0165.

[3]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[4]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[5]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  P. Best Radio source populations: Results from SDSS , 2009 .

[7]  Frazer N. Owen,et al.  A 20cm VLA Survey of Abell Clusters of Galaxies VI. Radio/Optical Luminosity Functions , 1996 .

[8]  Jeff Wagg,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[9]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[10]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[11]  Robert J. Brunner,et al.  Machine Learning and Cosmological Simulations I: Semi-Analytical Models , 2015, 1510.06402.

[12]  Dong Yu,et al.  Automatic Speech Recognition: A Deep Learning Approach , 2014 .

[13]  D. R. DeBoer,et al.  Hydrogen Epoch of Reionization Array (HERA) , 2016, 1606.07473.

[14]  M. Jarvis,et al.  An infrared–radio simulation of the extragalactic sky: from the Square Kilometre Array to Herschel , 2010, 1002.1112.

[15]  J. Riley,et al.  The Morphology of Extragalactic Radio Sources of High and Low Luminosity , 1974 .

[16]  R. Laing,et al.  Jet reorientation in AGN : two winged radio galaxies , 2001 .

[17]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[18]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[19]  Hannes Jensen,et al.  Reionization and the Cosmic Dawn with the Square Kilometre Array , 2012, 1210.0197.

[20]  S. J. Tingay,et al.  A High-Resolution Foreground Model for the MWA EoR1 Field: Model and Implications for EoR Power Spectrum Analysis , 2017, Publications of the Astronomical Society of Australia.

[21]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[22]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[23]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[24]  P. Giommi,et al.  Active galactic nuclei: what’s in a name? , 2017, The Astronomy and Astrophysics Review.

[25]  P. Best,et al.  Evolution of the radio-loud galaxy population , 2008, 0809.2076.

[26]  Jie Zhu,et al.  An Approach to Detect Cavities in X-Ray Astronomical Images Using Granular Convolutional Neural Networks , 2017, IEICE Trans. Inf. Syst..

[27]  S. Desai,et al.  Separation of pulsar signals from noise using supervised machine learning algorithms , 2017, Astron. Comput..

[28]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[29]  A. Aniyan,et al.  Classifying Radio Galaxies with the Convolutional Neural Network , 2017, 1705.03413.

[30]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[31]  E. Blanton,et al.  GALAXY CLUSTER ENVIRONMENTS OF RADIO SOURCES , 2010, 1008.1099.

[32]  N. Gehrels,et al.  Machine-z: Rapid Machine-Learned Redshift Indicator for Swift Gamma-Ray Bursts , 2015, 1512.07671.

[33]  G. Richards,et al.  ON THE POPULATIONS OF RADIO GALAXIES WITH EXTENDED MORPHOLOGY AT z < 0.3 , 2010, 1006.5452.

[34]  Charless C. Fowlkes,et al.  Do We Need More Training Data? , 2015, International Journal of Computer Vision.

[35]  R. P. Norris,et al.  Radio Galaxy Zoo: compact and extended radio source classification with deep learning , 2018, 1801.04861.

[36]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[37]  Zeljko Ivezic,et al.  A sample of radio-loud active galactic nuclei in the Sloan Digital Sky Survey , 2005 .

[38]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[39]  Sebastien Fabbro,et al.  An application of deep learning in the analysis of stellar spectra , 2017, 1709.09182.

[40]  C. Mackay Observations of the Structure of Radio sources in the 3C Catalogue —V: The Properties of Sources in a complete Sample , 1971 .

[41]  A. R. Whitney,et al.  FIRST SEASON MWA EOR POWER SPECTRUM RESULTS AT REDSHIFT 7 , 2016, 1608.06281.

[42]  Inas A. Yassine,et al.  Convolutional neural networks for deep feature learning in retinal vessel segmentation , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[43]  R. D. Baldi,et al.  FR0CAT: a FIRST catalog of FR0 radio galaxies , 2017, 1709.00015.

[44]  P. Best,et al.  The Combined NVSS–FIRST Galaxies (CoNFIG) sample – II. Comparison of space densities in the Fanaroff–Riley dichotomy , 2010 .

[45]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[46]  Saleem Zaroubi,et al.  The effect of foreground mitigation strategy on EoR window recovery , 2014, 1408.4695.

[47]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[48]  F. Massaro,et al.  FRIICAT: A FIRST catalog of FR II radio galaxies , 2017, 1703.03427.

[49]  A. Georgakakis,et al.  Estimating photometric redshifts for X-ray sources in the X-ATLAS field using machine-learning techniques , 2017, 1710.01313.

[50]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[51]  F. Massaro,et al.  FRICAT: A FIRST catalog of FRI radio galaxies , 2016, 1610.09376.

[52]  Ryan M. Rifkin,et al.  In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..

[53]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  P. H. Barchi,et al.  Improving galaxy morphology with machine learning , 2017, 1705.06818.

[55]  L. Miller,et al.  A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes , 2008, 0805.3413.

[56]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[57]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[58]  D. Proctor MORPHOLOGICAL ANNOTATIONS FOR GROUPS IN THE FIRST DATABASE , 2011, 1104.3896.

[59]  Anastasios Koulaouzidis,et al.  Investigating Cross-Dataset Abnormality Detection in Endoscopy with A Weakly-Supervised Multiscale Convolutional Neural Network , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[60]  Michele Piana,et al.  A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction , 2017, ArXiv.

[61]  P. Best,et al.  The CoNFIG Catalogue - II. Comparison of Space Densities in the FR Dichotomy , 2010, 1001.4514.

[62]  F. Owen,et al.  Head-tail radio sources in clusters of galaxies , 1976 .

[63]  Lei Wang,et al.  X-ray astronomical point sources recognition using granular binary-tree SVM , 2016, 2016 IEEE 13th International Conference on Signal Processing (ICSP).

[64]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[65]  Grigorios Tsoumakas,et al.  Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..

[66]  Laurence Perreault Levasseur,et al.  Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing , 2017, 1708.08843.

[67]  FIRST “Winged” and X-Shaped Radio Source Candidates , 2006, astro-ph/0701278.

[68]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[69]  Jie Zhu,et al.  Radio Galaxy Morphology Generation using Residual Convolutional Autoencoder and Gaussian Mixture Models , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[70]  P. Nulsen,et al.  Heating Hot Atmospheres with Active Galactic Nuclei , 2007, 0709.2152.

[71]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .