Matrix approximation and projective clustering via volume sampling
暂无分享,去创建一个
[1] Dimitris Achlioptas,et al. Fast computation of low-rank matrix approximations , 2007, JACM.
[2] Kasturi R. Varadarajan,et al. Geometric Approximation via Coresets , 2007 .
[3] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[4] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[5] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[6] Sudipto Guha,et al. Approximation and streaming algorithms for histogram construction problems , 2006, TODS.
[7] Pankaj K. Agarwal,et al. Approximation Algorithms for a k-Line Center , 2005, Algorithmica.
[8] Luis Rademacher,et al. Matrix Approximation and Projective Clustering via Iterative Sampling , 2005 .
[9] Sariel Har-Peled,et al. Coresets for $k$-Means and $k$-Median Clustering and their Applications , 2018, STOC 2004.
[10] Joan Feigenbaum,et al. On graph problems in a semi-streaming model , 2005, Theor. Comput. Sci..
[11] Amit Kumar,et al. A simple linear time (1 + /spl epsiv/)-approximation algorithm for k-means clustering in any dimensions , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[12] Michelle Effros,et al. Rapid near-optimal VQ design with a deterministic data net , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[13] Alan M. Frieze,et al. Clustering Large Graphs via the Singular Value Decomposition , 2004, Machine Learning.
[14] Nabil H. Mustafa,et al. k-means projective clustering , 2004, PODS.
[15] Sariel Har-Peled,et al. On coresets for k-means and k-median clustering , 2004, STOC '04.
[16] David Kempe,et al. A decentralized algorithm for spectral analysis , 2004, STOC '04.
[17] Amit Kumar,et al. A simple linear time ( 1+ ε)- approximation algorithm for geometric k-means clustering in any dimensions , 2004 .
[18] Michelle Effros,et al. Deterministic clustering with data nets , 2004, Electron. Colloquium Comput. Complex..
[19] Ziv Bar-Yossef,et al. Sampling lower bounds via information theory , 2003, STOC '03.
[20] Marek Karpinski,et al. Approximation schemes for clustering problems , 2003, STOC '03.
[21] Petros Drineas,et al. Pass efficient algorithms for approximating large matrices , 2003, SODA '03.
[22] Pankaj K. Agarwal,et al. Approximation Algorithms for k-Line Center , 2002, ESA.
[23] Sariel Har-Peled,et al. Projective clustering in high dimensions using core-sets , 2002, SCG '02.
[24] T. M. Murali,et al. A Monte Carlo algorithm for fast projective clustering , 2002, SIGMOD '02.
[25] Piotr Indyk,et al. Approximate clustering via core-sets , 2002, STOC '02.
[26] Rafail Ostrovsky,et al. Polynomial-time approximation schemes for geometric min-sum median clustering , 2002, JACM.
[27] Sudipto Guha,et al. Data-streams and histograms , 2001, STOC '01.
[28] S. Goreinov,et al. The maximum-volume concept in approximation by low-rank matrices , 2001 .
[29] Jirí Matousek,et al. On Approximate Geometric k -Clustering , 2000, Discret. Comput. Geom..
[30] Philip S. Yu,et al. Fast algorithms for projected clustering , 1999, SIGMOD '99.
[31] Alan M. Frieze,et al. Clustering in large graphs and matrices , 1999, SODA '99.
[32] Prabhakar Raghavan,et al. Computing on data streams , 1999, External Memory Algorithms.
[33] Alan M. Frieze,et al. Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[34] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[35] Noga Alon,et al. The space complexity of approximating the frequency moments , 1996, STOC '96.
[36] Henryk Wozniakowski,et al. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992, SIAM J. Matrix Anal. Appl..
[37] G. Golub. Matrix computations , 1983 .
[38] Nimrod Megiddo,et al. On the complexity of locating linear facilities in the plane , 1982, Oper. Res. Lett..