The Oseberg Transition: Visualization of Global bifurcations for the Kuramoto-Sivashinsky equation

We present and discuss certain global bifurcations involving the interaction of one- and two-dimensional invariant manifolds of steady and periodic solutions of the Kuramoto–Sivashinsky equation. Numerical bifurcation calculations, dimensionality reduction using approximate inertial manifolds/forms, as well as approximation and visualization of invariant manifolds are combined in order to characterize what we term the "Oseberg transition".

[1]  Mark Edward Johnson Computer-assisted studies and visualization of nonlinear phenomena : two-dimensional invariant manifolds, global bifurcations, and robustness of global attractors , 1998 .

[2]  Roger Temam,et al.  Evaluating the dimension of an inertial manifold for the Kuramoto-Sivashinsky equation , 1999 .

[3]  John N. Elgin,et al.  Travelling-waves of the Kuramoto-Sivashinsky, equation: period-multiplying bifurcations , 1992 .

[4]  J. Palis,et al.  Geometric theory of dynamical systems , 1982 .

[5]  Hsueh-Chia Chang,et al.  Traveling waves on fluid interfaces: Normal form analysis of the Kuramoto–Sivashinsky equation , 1986 .

[6]  Roger Temam,et al.  Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case , 1994, Differential and Integral Equations.

[7]  Bernd Krauskopf,et al.  Two-dimensional global manifolds of vector fields. , 1999, Chaos.

[8]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[9]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[10]  Silvina Ponce Dawson,et al.  Collections of heteroclinic cycles in the Kuramoto-Sivashinsky equation , 1997 .

[11]  Harry Dankowicz,et al.  Local models of spatio-temporally complex fields , 1996 .

[12]  James C. Robinson Inertial manifolds for the Kuramoto-Sivashinsky equation , 1994 .

[13]  Clint Scovel,et al.  Scaling laws and the prediction of bifurcations in systems modeling pattern formation , 1988 .

[14]  Colin Sparrow,et al.  Local and global behavior near homoclinic orbits , 1984 .

[15]  R. Rosa,et al.  Approximate inertial manifolds of exponential order , 1995 .

[16]  G. Sell,et al.  On the computation of inertial manifolds , 1988 .

[17]  Kurt Wiesenfeld,et al.  Suppression of period doubling in symmetric systems , 1984 .

[18]  Y. Kuramoto,et al.  Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium , 1976 .

[19]  G. Sivashinsky On Flame Propagation Under Conditions of Stoichiometry , 1980 .

[20]  R. Temam,et al.  Accurate Computations on Inertial Manifolds , 2000, SIAM J. Sci. Comput..

[21]  John Guckenheimer,et al.  Kuramoto-Sivashinsky dynamics on the center-unstable manifold , 1989 .

[22]  Philip Holmes,et al.  Scale and space localization in the Kuramoto-Sivashinsky equation. , 1999, Chaos.

[23]  I. Kevrekidis,et al.  Back in the saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation , 1990 .

[24]  I. Kevrekidis,et al.  Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations , 1990 .

[25]  Roger Temam,et al.  Inertial Manifolds for the Kuramoto-Sivashinsky Equation and an Estimate of their Lowest Dimension , 1986 .

[26]  Xiaosong Liu Gevrey class regularity and approximate inertial manifolds for the Kuramoto-Sivashinsky equation , 1991 .