Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders

[1]  J. Klein,et al.  A New Commitment to Newborn Survival , 2015, Pediatrics.

[2]  G. Parati,et al.  Circulating factors are involved in hypoxia-induced hepcidin suppression. , 2014, Blood cells, molecules & diseases.

[3]  G. Semenza,et al.  A genetic mechanism for Tibetan high-altitude adaptation , 2014, Nature Genetics.

[4]  Asan,et al.  Altitude adaptation in Tibet caused by introgression of Denisovan-like DNA , 2014, Nature.

[5]  G. Semenza,et al.  Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. , 2014, Annual review of pathology.

[6]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[7]  Thomas G. Smith,et al.  Regulation of hepcidin expression at high altitude. , 2012, Blood.

[8]  L. Jorde,et al.  Genetic determinants of Tibetan high-altitude adaptation , 2012, Human Genetics.

[9]  J. Prchal,et al.  A Novel PHD2 Mutation Associated with Tibetan Genetic Adaptation to High Altitude Hypoxia. , 2010 .

[10]  Rui Mei,et al.  Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data , 2010, PLoS genetics.

[11]  Asan,et al.  Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude , 2010, Science.

[12]  Wei Wang,et al.  Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders , 2010, Proceedings of the National Academy of Sciences.

[13]  Or Zuk,et al.  A Composite of Multiple Signals Distinguishes Causal Variants in Regions of Positive Selection , 2010, Science.

[14]  K. Steenland,et al.  Maternal hemoglobin level and fetal outcome at low and high altitudes. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[15]  W. Kaelin,et al.  Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. , 2008, Molecular cell.

[16]  David R. Cox,et al.  PRINCIPLES OF STATISTICAL INFERENCE , 2017 .

[17]  F. Léon-Velarde,et al.  Consensus statement on chronic and subacute high altitude diseases. , 2005, High altitude medicine & biology.

[18]  Ge-dong,et al.  Hemoglobin levels in Qinghai-Tibet: different effects of gender for Tibetans vs. Han. , 2005, Journal of applied physiology.

[19]  Elaine Lyon,et al.  Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. , 2004, Clinical chemistry.

[20]  L. Moore,et al.  Tibetan protection from intrauterine growth restriction (IUGR) and reproductive loss at high altitude , 2001, American journal of human biology : the official journal of the Human Biology Council.

[21]  J. Blangero,et al.  Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. , 1998, American journal of physical anthropology.

[22]  L. Moore,et al.  Human adaptation to high altitude: regional and life-cycle perspectives. , 1998, American journal of physical anthropology.

[23]  J B West,et al.  Prediction of barometric pressures at high altitude with the use of model atmospheres. , 1996, Journal of applied physiology.

[24]  J. Blangero,et al.  Major gene for percent of oxygen saturation of arterial hemoglobin in Tibetan highlanders. , 1994, American journal of physical anthropology.

[25]  L. Moore,et al.  Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. , 1994, American journal of physical anthropology.

[26]  M. Sherpa,et al.  Different hematologic responses to hypoxia in Sherpas and Quechua Indians. , 1989, Journal of applied physiology.