The number of edges of the edge polytope of a finite simple graph

Let d  ≥ 3 be an integer. It is known that the number of edges of the edge polytope of the complete graph with d vertices is d ( d  − 1)( d  − 2) / 2 . In this paper, we study the maximum possible number μ d of edges of the edge polytope arising from finite simple graphs with d vertices. We show that μ d  =  d ( d  − 1)( d  − 2) / 2 if and only if 3 ≤  d  ≤ 14 . In addition, we study the asymptotic behavior of μ d . Tran–Ziegler gave a lower bound for μ d by constructing a random graph. We succeeded in improving this bound by constructing both a non-random graph and a random graph whose complement is bipartite.

[1]  Takayuki Hibi,et al.  Toric Ideals Generated by Quadratic Binomials , 1999 .

[2]  Takayuki Hibi,et al.  Normal Polytopes Arising from Finite Graphs , 1998 .

[3]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[4]  Günter M. Ziegler,et al.  Extremal Edge Polytopes , 2013, Electron. J. Comb..

[5]  B. Bollobás On complete subgraphs of different orders , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Béla Bollobás,et al.  Random Graphs , 1985 .

[7]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[8]  Ki Hang Kim,et al.  On a problem of Turán , 1983 .

[9]  Takayuki Hibi,et al.  Compressed polytopes, initial ideals and complete multipartite graphs , 2000 .

[10]  Takayuki Hibi,et al.  Separating hyperplanes of edge polytopes , 2013, J. Comb. Theory, Ser. A.

[11]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[12]  Takayuki Hibi,et al.  Simple Polytopes Arising From Finite Graphs , 2008, ITSL.