Multidimensional prewhitening for enhanced signal reconstruction and parameter estimation in colored noise with Kronecker correlation structure

Parameter estimation of multidimensional data in the presence of colored noise or interference with a Kronecker product covariance structure, which appears in electroencephalogram/magnetoencephalogram and multiple-input multiple-output applications, is addressed. In order to improve the accuracy of the multidimensional subspace-based estimation techniques designed for white noise, prewhitening algorithms are devised by exploiting the Kronecker structure of the noise covariance matrix. We first contribute to the development of the multidimensional prewhitening (MD-PWT) scheme which assumes that noise-only measurements are available. By applying prewhitening sequentially along various dimensions using the corresponding correlation factors estimated from the noise-only measurements, the MD-PWT significantly improves the performance of the closed-form parallel factor decomposition based parameter estimator (CFP-PE) with a small number of noise-only snapshots. When noise-only measurements are unavailable, an iterative joint estimation of noise and signal parameters and prewhitening algorithm is proposed by iteratively applying the MD-PWT and CFP-PE. Adaptive convergence thresholds are designed as the stopping conditions such that the optimal number of iterations is automatically determined. Simulation results show that the iterative scheme performs nearly the same as the MD-PWT with noise statistics, in all scenarios except for a special one of intermediate signal-to-noise ratios and high noise correlation levels.

[1]  Rodney A. Kennedy,et al.  Noise modeling for nearfield array optimization , 1999, IEEE Signal Processing Letters.

[2]  Martin Haardt,et al.  Structured least squares to improve the performance of ESPRIT-type algorithms , 1997, IEEE Trans. Signal Process..

[3]  Florian Roemer,et al.  Robust R-D parameter estimation via closed-form PARAFAC in Kronecker colored environments , 2010, 2010 7th International Symposium on Wireless Communication Systems.

[4]  A. Chindapol,et al.  A Kronecker product improvement to PCA for space time adaptive processing , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[5]  Jian Li,et al.  An efficient algorithm for two-dimensional frequency estimation , 1996, Multidimens. Syst. Signal Process..

[6]  Lourens J. Waldorp,et al.  Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model , 2002, IEEE Transactions on Biomedical Engineering.

[7]  Magnus Jansson,et al.  On Toeplitz and Kronecker structured covariance matrix estimation , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.

[8]  João Cesar M. Mota,et al.  PARAFAC-based channel estimation and data recovery in nonlinear MIMO spread spectrum communication systems , 2011, Signal Process..

[9]  Peter C. M. Molenaar,et al.  Estimated generalized least squares electromagnetic source analysis based on a parametric noise covariance model [EEG/MEG] , 2001, IEEE Transactions on Biomedical Engineering.

[10]  Christoph F. Mecklenbräuker,et al.  Multidimensional Rank Reduction Estimator for Parametric MIMO Channel Models , 2004, EURASIP J. Adv. Signal Process..

[11]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[12]  Barry D. Van Veen,et al.  Maximum-likelihood estimation of low-rank signals for multiepoch MEG/EEG analysis , 2004, IEEE Transactions on Biomedical Engineering.

[13]  Anthony J. Weiss,et al.  Noise Covariance Modeling In Array Processing , 1994, IEEE Seventh SP Workshop on Statistical Signal and Array Processing.

[14]  M. Haardt,et al.  A closed-form solution for multilinear PARAFAC decompositions , 2008, 2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop.

[15]  Brian D. Jeffs,et al.  Adaptive image restoration using a generalized Gaussian model for unknown noise , 1995, IEEE Trans. Image Process..

[16]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[17]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[18]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[19]  Jun Liu,et al.  An Eigenvector-Based Approach for Multidimensional Frequency Estimation With Improved Identifiability , 2006, IEEE Transactions on Signal Processing.

[20]  Florian Roemer,et al.  DETERMINISTIC PREWHITENING TO IMPROVE SUBSPACE BASED PARAMETER ESTIMATION TECHNIQUES IN SEVERELY COLORED NOISE ENVIRONMENTS , 2009 .

[21]  Florian Roemer,et al.  Iterative Sequential GSVD (I-S-GSVD) based prewhitening for multidimensional HOSVD based subspace estimation without knowledge of the noise covariance information , 2010, 2010 International ITG Workshop on Smart Antennas (WSA).

[22]  Søren Holdt Jensen,et al.  Reduction of broad-band noise in speech by truncated QSVD , 1995, IEEE Trans. Speech Audio Process..

[23]  Florian Roemer,et al.  Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems , 2008, IEEE Transactions on Signal Processing.

[24]  Jian Li,et al.  One-dimensional MODE algorithm for two-dimensional frequency estimation , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[25]  Florian Roemer,et al.  SEQUENTIAL GSVD BASED PREWHITENING FOR MULTIDIMENSIONAL HOSVD BASED SUBSPACE ESTIMATION , 2009 .

[26]  Martin Haardt,et al.  Geometry-based channel modelling of MIMO channels in comparison with channel sounder measurements , 2005 .

[27]  Hamidreza Amindavar,et al.  Underwater Noise Modeling and Direction-Finding Based on Conditional Heteroscedastic Time Series , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[28]  R. Lynn Kirlin,et al.  Array signal processing using GARCH noise modeling , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[29]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[30]  Michael I. Miller,et al.  Maximum-likelihood narrow-band direction finding and the EM algorithm , 1990, IEEE Trans. Acoust. Speech Signal Process..

[31]  Brian M. Sadler,et al.  Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures , 2000, IEEE Trans. Signal Process..

[32]  Jian Li,et al.  One-Dimensional MODE Algorithm for Two-Dimensional Frequency Estimation , 1997, Multidimens. Syst. Signal Process..

[33]  Yuan-Hwang Chen,et al.  DOA estimation by fourth-order cumulants in unknown noise environments , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[34]  Josef A. Nossek,et al.  Simultaneous Schur decomposition of several matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[35]  Florian Roemer,et al.  Multi-dimensional space-time-frequency component analysis of event related EEG data using closed-form PARAFAC , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[36]  Tan F. Wong,et al.  Training sequence optimization in MIMO systems with colored interference , 2004, IEEE Transactions on Communications.

[37]  Lourens J. Waldorp,et al.  Estimating stationary dipoles from MEG/EEG data contaminated with spatially and temporally correlated background noise , 2001, NeuroImage.

[38]  Ehud Weinstein,et al.  Iterative and sequential algorithms for multisensor signal enhancement , 1994, IEEE Trans. Signal Process..

[39]  Björn E. Ottersten,et al.  Modeling of wide-band MIMO radio channels based on NLoS indoor measurements , 2004, IEEE Transactions on Vehicular Technology.

[40]  Nikos D. Sidiropoulos,et al.  Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.

[41]  A. Enis Çetin,et al.  Robust direction-of-arrival estimation in non-Gaussian noise , 1998, IEEE Trans. Signal Process..

[42]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[43]  Atika Rivenq,et al.  Monte Carlo Methods for Channel, Phase Noise, and Frequency Offset Estimation With Unknown Noise Variances in OFDM Systems , 2008, IEEE Transactions on Signal Processing.

[44]  Tan F. Wong,et al.  Training sequence optimization in MIMO systems with colored noise , 2003, IEEE Military Communications Conference, 2003. MILCOM 2003..

[45]  D. H. Staelin,et al.  Iterative signal-order and noise estimation for multivariate data , 2001 .

[46]  Peter Strobach Low-rank detection of multichannel Gaussian signals using block matrix approximation , 1995, IEEE Trans. Signal Process..

[47]  P. Hansen,et al.  Prewhitening for rank-deficient noise in subspace methods for noise reduction , 2005, IEEE Transactions on Signal Processing.

[48]  Carlos H. Muravchik,et al.  Shrinkage Approach for Spatiotemporal EEG Covariance Matrix Estimation , 2013, IEEE Transactions on Signal Processing.

[49]  Nikos D. Sidiropoulos,et al.  Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , 2004, IEEE Transactions on Signal Processing.

[50]  Michael D. Zoltowski,et al.  Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT , 1996, IEEE Trans. Signal Process..

[51]  Harry L. Van Trees,et al.  Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory , 2002 .

[52]  Florian Roemer,et al.  Robust R-D parameter estimation via closed-form PARAFAC , 2010, 2010 International ITG Workshop on Smart Antennas (WSA).

[53]  Martin Haardt,et al.  Single Snapshot R-D Unitary Tensor-ESPRIT Using an Augmentation of the Tensor Order , 2009, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[54]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of constant modulus multidimensional harmonic retrieval , 2002, IEEE Trans. Signal Process..

[55]  Nikos D. Sidiropoulos,et al.  Almost-sure identifiability of multidimensional harmonic retrieval , 2001, IEEE Trans. Signal Process..

[56]  H. Amindavar,et al.  Maximum Likelihood Localization using GARCH Noise Models , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[57]  Petre Stoica,et al.  On Estimation of Covariance Matrices With Kronecker Product Structure , 2008, IEEE Transactions on Signal Processing.

[58]  P. Stoica,et al.  The stochastic CRB for array processing: a textbook derivation , 2001, IEEE Signal Processing Letters.