Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells

[1]  Henriette M.C. Azeredo,et al.  Betalains: properties, sources, applications, and stability ? a review. , 2009 .

[2]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[3]  L. Packer,et al.  Antioxidant activity of nasunin, an anthocyanin in eggplant peels. , 2000, Toxicology.

[4]  Michael Grätzel,et al.  Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. , 2010, Angewandte Chemie.

[5]  J. Rabani,et al.  Photosensitization of nanocrystalline TiO2 films by pomegranate pigments with unusually high efficiency in aqueous medium. , 2001, Chemical communications.

[6]  Qing Wang,et al.  Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells , 2007 .

[7]  Michael Grätzel,et al.  Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals , 2003 .

[8]  J. Fernández-López,et al.  Color properties and stability of betacyanins from Opuntia fruits. , 2003, Journal of agricultural and food chemistry.

[9]  M. Graetzel,et al.  Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins , 1993 .

[10]  Greg P. Smestad,et al.  Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies , 1994 .

[11]  J. Fernández-López,et al.  Determination of Antioxidant Constituents in Cactus Pear Fruits , 2010, Plant foods for human nutrition.

[12]  Roberto Argazzi,et al.  Natural dye senstizers for photoelectrochemical cells , 2009 .

[13]  N. M. Iha,et al.  Metal complex sensitizers in dye-sensitized solar cells , 2004 .

[14]  Ho Chang,et al.  Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea , 2010 .

[15]  Greg P. Smestad,et al.  Education and solar conversion:: Demonstrating electron transfer , 1998 .

[16]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[17]  Anders Hagfeldt,et al.  Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. , 2006, The journal of physical chemistry. B.

[18]  T. Maoka,et al.  Fabrication of dye-sensitized solar cells using chlorophylls c1 and c2 and their oxidized forms c1′ and c2′ from Undaria pinnatifida (Wakame) , 2007 .

[19]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[20]  Jeanne L. McHale,et al.  Betalain pigments for dye-sensitized solar cells , 2007 .

[21]  Erin Baker,et al.  Estimating the manufacturing cost of purely organic solar cells , 2009 .

[22]  Florian C. Stintzing,et al.  Betalains – emerging prospects for food scientists , 2007 .

[23]  Hidetoshi Miura,et al.  High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. , 2008, Chemical communications.

[24]  K. Ho,et al.  Enhancing the performance of dye-sensitized solar cells based on an organic dye by incorporating TiO2 nanotube in a TiO2 nanoparticle film , 2009 .

[25]  Torgils Fossen,et al.  Colour and stability of pure anthocyanins influenced by pH including the alkaline region , 1998 .

[26]  K. Tennakone,et al.  Nanoporous TiO2 photoanode sensitized with the flower pigment cyanidin , 1997 .

[27]  Aldo Di Carlo,et al.  Efficient Dye-Sensitized Solar Cells Using Red Turnip and Purple Wild Sicilian Prickly Pear Fruits , 2010, International journal of molecular sciences.

[28]  Michael Grätzel,et al.  Applications of functionalized transition metal complexes in photonic and optoelectronic devices , 1998 .

[29]  Shane Ardo,et al.  Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. , 2009, Chemical Society reviews.

[30]  W. Maier,et al.  An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media , 1997 .

[31]  Masayuki Okuya,et al.  Shiso leaf pigments for dye-sensitized solid-state solar cell , 2006 .

[32]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[33]  G. Calogero,et al.  Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells , 2008 .

[34]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[35]  Sumaeth Chavadej,et al.  Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers , 2007 .

[36]  W. Hurst Methods of analysis for functional foods and nutraceuticals , 2002 .

[37]  Roberto Argazzi,et al.  Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine and cyanide ligands , 2004 .

[38]  C. Bignozzi,et al.  Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. , 2005, Journal of the American Chemical Society.

[39]  Qing Dai,et al.  Unusually efficient photosensitization of nanocrystalline TiO2 films by pomegranate pigments in aqueous medium , 2002 .

[40]  Aurora E. Clark,et al.  DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells , 2007 .

[41]  F. Cimino,et al.  Recovery of anthocyanins from eggplant peel , 2009 .

[42]  Jean-François Guillemoles,et al.  Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium , 2004 .

[43]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[44]  Thomas Geiger,et al.  Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. , 2007, Journal of the American Chemical Society.

[45]  Greg P. Smestad,et al.  Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode , 1997 .

[46]  G. Calogero,et al.  A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells , 2011 .

[47]  M. Pedreño,et al.  Correlation between antiradical activity and stability of betanine from Beta vulgaris L roots under different pH, temperature and light conditions , 2001 .

[48]  Nathan S. Lewis,et al.  Electron Transfer Dynamics in Nanocrystalline Titanium Dioxide Solar Cells Sensitized with Ruthenium or Osmium Polypyridyl Complexes , 2001 .

[49]  N. M. Iha,et al.  Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba , 2006 .

[50]  Francesco Bonaccorso,et al.  Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells. , 2010, Dalton transactions.

[51]  J. Rabani,et al.  Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes , 2002 .