Mechanics of Stretchable Electronics

Recent advances in mechanics and materials provide routes to integrated circuits that offer the electrical properties of conventional, rigid wafer-based technologies but with the ability to be stretched, compressed, twisted, bent and deformed into arbitrary, curvilinear shapes. This paper summarizes developments in this emerging field, with descriptions of application opportunities, fundamental aspects, representative devices, and particularly the effect of plastic deformation.

[1]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[2]  John A. Rogers,et al.  Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates , 2008 .

[3]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[4]  John A. Rogers,et al.  Mechanics of noncoplanar mesh design for stretchable electronic circuits , 2009 .

[5]  J. Rogers,et al.  Stress focusing for controlled fracture in microelectromechanical systems , 2007 .

[6]  John A. Rogers,et al.  Materials for stretchable electronics in bioinspired and biointegrated devices , 2012 .

[7]  John A. Rogers,et al.  Kinetically controlled, adhesiveless transfer printing using microstructured stamps , 2009 .

[8]  John A Rogers,et al.  Competing fracture in kinetically controlled transfer printing. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  Yonggang Huang,et al.  Laser-Driven Micro Transfer Placement of Prefabricated Microstructures , 2012, Journal of Microelectromechanical Systems.

[10]  J. Rogers,et al.  Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates , 2010, Nanotechnology.

[11]  John A. Rogers,et al.  Stretchability of encapsulated electronics , 2011 .

[12]  Huanyu Cheng,et al.  Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing , 2012 .

[13]  John A. Rogers,et al.  Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs , 2010 .

[14]  Huanyu Cheng,et al.  An analytical model of strain isolation for stretchable and flexible electronics , 2011 .

[15]  J. Rogers,et al.  Finite width effect of thin-films buckling on compliant substrate : Experimental and theoretical studies , 2008 .

[16]  John A Rogers,et al.  Optimized structural designs for stretchable silicon integrated circuits. , 2009, Small.

[17]  Metin Sitti,et al.  Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing , 2010, Proceedings of the National Academy of Sciences.

[18]  John A. Rogers,et al.  Flexible Electronics: Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper (Adv. Mater. 36/2009) , 2009 .

[19]  John A Rogers,et al.  Materials and designs for wirelessly powered implantable light-emitting systems. , 2012, Small.

[20]  Weixing Zhou,et al.  Stamp collapse in soft lithography. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[21]  John A. Rogers,et al.  Collapse of stamps for soft lithography due to interfacial adhesion , 2005 .

[22]  John A Rogers,et al.  Semiconductor wires and ribbons for high-performance flexible electronics. , 2008, Angewandte Chemie.

[23]  John A. Rogers,et al.  Mechanics of stretchable inorganic electronic materials , 2009 .

[24]  Audrey M. Bowen,et al.  Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication , 2012, Advanced materials.

[25]  John A Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010, Advanced materials.

[26]  Nicholas V. Annetta,et al.  A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology , 2010, Science Translational Medicine.

[27]  Reprint of “Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates” [In. J. Solids Struct. 45 (2008) 2014–2023] , 2008 .

[28]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[29]  Bong Hoon Kim,et al.  Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. , 2011, Nano letters.

[30]  Yonggang Huang,et al.  Analytical and Experimental Studies of the Mechanics of Deformation in a Solid With a Wavy Surface Profile , 2010 .

[31]  Placid Mathew Ferreira,et al.  Active, Programmable Elastomeric Surfaces with Tunable Adhesion for Deterministic Assembly by Transfer Printing , 2012 .

[32]  J. Rogers,et al.  Mechanics of buckled carbon nanotubes on elastomeric substrates , 2008 .

[33]  John A. Rogers,et al.  Mechanics of curvilinear electronics † , 2010 .

[34]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[35]  Huanyu Cheng,et al.  Elastomer Surfaces with Directionally Dependent Adhesion Strength and Their Use in Transfer Printing with Continuous Roll‐to‐Roll Applications , 2012, Advanced materials.

[36]  Yonggang Huang,et al.  Stretchable and compressible thin films of stiff materials on compliant wavy substrates , 2008 .

[37]  Rui Li,et al.  Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis , 2012 .

[38]  Yonggang Huang,et al.  Defect Tolerance and Nanomechanics in Transistors that Use Semiconductor Nanomaterials and Ultrathin Dielectrics , 2008 .

[39]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[40]  Yewang Su,et al.  Postbuckling analysis and its application to stretchable electronics , 2012 .

[41]  John A Rogers,et al.  Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting , 2011, Proceedings of the National Academy of Sciences.

[42]  Huanyu Cheng,et al.  An analytical model for shear-enhanced adhesiveless transfer printing , 2012 .

[43]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[44]  John A. Rogers,et al.  Mechanics of hemispherical electronics , 2009 .

[45]  John A Rogers,et al.  Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics. , 2012, Small.

[46]  Yonggang Huang,et al.  Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage , 2011, Advanced materials.

[47]  John A Rogers,et al.  Imbricate scales as a design construct for microsystem technologies. , 2012, Small.

[48]  John A. Rogers,et al.  Buckling of a stiff thin film on a compliant substrate in large deformation , 2008 .

[49]  Yonggang Huang,et al.  Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability , 2011, Proceedings of the National Academy of Sciences.

[50]  Heung Cho Ko,et al.  Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. , 2009, Small.

[51]  Yonggang Huang,et al.  Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics , 2010 .

[52]  Jian Wu,et al.  Mechanics of stretchable electronics with high fill factors , 2012 .

[53]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[54]  Huanyu Cheng,et al.  Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly , 2011 .

[55]  Yewang Su,et al.  Mechanics of Epidermal Electronics , 2012 .

[56]  John A Rogers,et al.  Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. , 2008, Nano letters.

[57]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[58]  J. Rogers,et al.  A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates , 2006, Science.

[59]  Placid Mathew Ferreira,et al.  Axisymmetric thermo-mechanical analysis of laser-driven non-contact transfer printing , 2012 .

[60]  Yonggang Huang,et al.  Transfer printing by kinetic control of adhesion to an elastomeric stamp , 2006 .

[61]  Andrew G. Alleyne,et al.  Mechanism for stamp collapse in soft lithography , 2005 .

[62]  John A. Rogers,et al.  Mechanics of reversible adhesion , 2011 .

[63]  John A. Rogers,et al.  Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects , 2008 .

[64]  Yonggang Huang,et al.  A curvy, stretchy future for electronics , 2009, Proceedings of the National Academy of Sciences.

[65]  John A Rogers,et al.  Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors , 2012, Nature Communications.

[66]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[67]  John A. Rogers,et al.  Erratum: “Kinetically controlled, adhesiveless transfer printing using microstructured stamps” [Appl. Phys. Lett. 94, 113502 (2009)] , 2009 .

[68]  J. Rogers,et al.  Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.

[69]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[70]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[71]  John A. Rogers,et al.  Local versus global buckling of thin films on elastomeric substrates , 2008 .

[72]  Yonggang Huang,et al.  Edge effects in buckled thin films on elastomeric substrates , 2007 .

[73]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[74]  Y. Huang,et al.  A thermal analysis of the operation of microscale, inorganic light-emitting diodes , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[75]  Heung Cho Ko,et al.  Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras. , 2010, Small.

[76]  John A Rogers,et al.  High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. , 2012, Small.

[77]  John A Rogers,et al.  Light Emission Characteristics and Mechanics of Foldable Inorganic Light‐Emitting Diodes , 2010, Advanced materials.

[78]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[79]  John A. Rogers,et al.  An analytical study of two-dimensional buckling of thin films on compliant substrates , 2008 .

[80]  John A. Rogers,et al.  Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates , 2008 .

[81]  Yonggang Huang,et al.  Biaxially stretchable "wavy" silicon nanomembranes. , 2007, Nano letters.

[82]  John A Rogers,et al.  Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. , 2011, ACS nano.

[83]  John A. Rogers,et al.  Mechanics of precisely controlled thin film buckling on elastomeric substrate , 2007 .

[84]  John A Rogers,et al.  Lateral buckling mechanics in silicon nanowires on elastomeric substrates. , 2009, Nano letters.

[85]  Yonggang Huang,et al.  A strain-isolation design for stretchable electronics , 2010 .

[86]  Contact radius of stamps in reversible adhesion , 2011 .

[87]  J. Rogers,et al.  Finite deformation mechanics in buckled thin films on compliant supports , 2007, Proceedings of the National Academy of Sciences.