Enhanced modulation bandwidth of nanocavity light emitting devices.

We show that the direct modulation bandwidth of nano-cavity light emitting devices (nLEDs) can greatly exceed that of any laser. By performing a detailed analysis, we show that the modulation bandwidth can be increased by the Purcell effect, but that this enhancement occurs only when the device is biased below the lasing threshold. The maximum bandwidth is shown to be inversely proportional to the square root of the modal volume, with sub-wavelength cavities necessary to exceed conventional laser speeds.

[1]  M. Orenstein,et al.  Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons. , 2006, Optics express.

[2]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[3]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[4]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[5]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[6]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[7]  E. Yablonovitch Light Emission in Photonic Crystal Micro-Cavities , 1995 .

[8]  H. Yokoyama,et al.  Rate equation analysis of microcavity lasers , 1989 .

[9]  Andrey K. Sarychev,et al.  Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser , 2006, SPIE Optics + Photonics.

[10]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[11]  Larry A. Coldren,et al.  Generation of picosecond pulses with a gain‐switched GaAs surface‐emitting laser , 1990 .

[12]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[13]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[14]  Gunnar Björk,et al.  Analysis of semiconductor microcavity lasers using rate equations , 1991 .

[15]  O. Painter,et al.  Two-dimensional photonic bandgap defect laser , 1999, 1999 Digest of the LEOS Summer Topical Meetings: Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems (Cat. No.99TH8455).

[16]  Y. Rahmat-Samii,et al.  Smallest possible electromagnetic mode volume in a dielectric cavity : Photonic crystals and microstructures , 1998 .

[17]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[18]  Rodney S. Tucker,et al.  High-speed modulation of semiconductor lasers , 1985 .

[19]  A. Sakai,et al.  Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 /spl mu/m , 1997, IEEE Photonics Technology Letters.

[20]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[21]  Axel Scherer,et al.  Visible submicron microdisk lasers , 2007 .

[22]  Masahiro Asada,et al.  Intraband relaxation time in quantum-well lasers , 1989 .

[23]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[24]  Jean-Michel Gérard,et al.  Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities , 1999 .

[25]  Toshihiko Baba,et al.  Photonic crystals and microdisk cavities based on GaInAsP-InP system , 1997 .

[26]  E. Yablonovitch,et al.  Evaluation of new materials for plasmonic imaging lithography at 476nm using near field scanning optical microscopy , 2007 .

[27]  Andrey K. Sarychev,et al.  Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser , 2007 .

[28]  S. Chuang,et al.  Theory for bowtie plasmonic nanolasers. , 2008, Optics express.

[29]  Shota Kita,et al.  Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. , 2007, Optics express.

[30]  M. Yamada,et al.  Estimation of the Intra-Band Relaxation Time in Undoped AlGaAs Injection Laser , 1980 .

[31]  Hiroyuki Sakaki,et al.  Picosecond pulse generation (<1.8 ps) in a quantum well laser by a gain switching method , 1987 .