Execution-Guided Neural Program Decoding

We present a neural semantic parser that translates natural language questions into executable SQL queries with two key ideas. First, we develop an encoder-decoder model, where the decoder uses a simple type system of SQL to constraint the output prediction, and propose a value-based loss when copying from input tokens. Second, we explore using the execution semantics of SQL to repair decoded programs that result in runtime error or return empty result. We propose two modelagnostics repair approaches, an ensemble model and a local program repair, and demonstrate their effectiveness over the original model. We evaluate our model on the WikiSQL dataset and show that our model achieves close to state-of-the-art results with lesser model complexity.

[1]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[2]  Mirella Lapata,et al.  Language to Logical Form with Neural Attention , 2016, ACL.

[3]  Andrew Chou,et al.  Semantic Parsing on Freebase from Question-Answer Pairs , 2013, EMNLP.

[4]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[5]  Tommi S. Jaakkola,et al.  Tree-structured decoding with doubly-recurrent neural networks , 2016, ICLR.

[6]  H. V. Jagadish,et al.  NaLIX: an interactive natural language interface for querying XML , 2005, SIGMOD '05.

[7]  Richard Socher,et al.  Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning , 2018, ArXiv.

[8]  Dawn Xiaodong Song,et al.  SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning , 2017, ArXiv.

[9]  Sumit Gulwani,et al.  NLyze: interactive programming by natural language for spreadsheet data analysis and manipulation , 2014, SIGMOD Conference.

[10]  Hang Li,et al.  “ Tony ” DNN Embedding for “ Tony ” Selective Read for “ Tony ” ( a ) Attention-based Encoder-Decoder ( RNNSearch ) ( c ) State Update s 4 SourceVocabulary Softmax Prob , 2016 .

[11]  Quoc V. Le,et al.  Adding Gradient Noise Improves Learning for Very Deep Networks , 2015, ArXiv.

[12]  Dan Klein,et al.  Abstract Syntax Networks for Code Generation and Semantic Parsing , 2017, ACL.

[13]  Jayant Krishnamurthy,et al.  Neural Semantic Parsing with Type Constraints for Semi-Structured Tables , 2017, EMNLP.

[14]  Ming-Wei Chang,et al.  Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base , 2015, ACL.

[15]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[16]  Yoshimasa Tsuruoka,et al.  A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks , 2016, EMNLP.

[17]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[18]  Hoifung Poon,et al.  Grounded Unsupervised Semantic Parsing , 2013, ACL.

[19]  Tao Yu,et al.  TypeSQL: Knowledge-Based Type-Aware Neural Text-to-SQL Generation , 2018, NAACL.

[20]  Nick Campbell,et al.  Doubly-Attentive Decoder for Multi-modal Neural Machine Translation , 2017, ACL.

[21]  Ming-Wei Chang,et al.  Search-based Neural Structured Learning for Sequential Question Answering , 2017, ACL.

[22]  Jonathan Berant,et al.  Building a Semantic Parser Overnight , 2015, ACL.

[23]  Percy Liang,et al.  Data Recombination for Neural Semantic Parsing , 2016, ACL.

[24]  Mirella Lapata,et al.  Coarse-to-Fine Decoding for Neural Semantic Parsing , 2018, ACL.

[25]  Luke S. Zettlemoyer,et al.  Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars , 2005, UAI.

[26]  Martín Abadi,et al.  Learning a Natural Language Interface with Neural Programmer , 2016, ICLR.

[27]  Luke S. Zettlemoyer,et al.  Bootstrapping Semantic Parsers from Conversations , 2011, EMNLP.

[28]  Percy Liang,et al.  Compositional Semantic Parsing on Semi-Structured Tables , 2015, ACL.

[29]  Alvin Cheung,et al.  Learning a Neural Semantic Parser from User Feedback , 2017, ACL.