Protein delivery into eukaryotic cells by type III secretion machines

Bacteria that have sustained long-standing close associations with eukaryotic hosts have evolved specific adaptations to survive and replicate in this environment. Perhaps one of the most remarkable of those adaptations is the type III secretion system (T3SS)—a bacterial organelle that has specifically evolved to deliver bacterial proteins into eukaryotic cells. Although originally identified in a handful of pathogenic bacteria, T3SSs are encoded by a large number of bacterial species that are symbiotic or pathogenic for humans, other animals including insects or nematodes, and plants. The study of these systems is leading to unique insights into not only organelle assembly and protein secretion but also mechanisms of symbiosis and pathogenesis.

[1]  A. Collmer,et al.  Type III secretion system effector proteins: double agents in bacterial disease and plant defense. , 2004, Annual review of phytopathology.

[2]  Shin-Ichi Aizawa,et al.  Type III secretion systems and bacterial flagella: Insights into their function from structural similarities , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Galán,et al.  Supramolecular structure of the Salmonella typhimurium type III protein secretion system. , 1998, Science.

[4]  J. Galán,et al.  Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Tomoko Kubori,et al.  Salmonella Type III Secretion-Associated Protein InvE Controls Translocation of Effector Proteins into Host Cells , 2002, Journal of bacteriology.

[6]  M. Telepnev,et al.  GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure , 2000, Molecular microbiology.

[7]  K. Oosawa,et al.  Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium , 1994, Journal of bacteriology.

[8]  Partho Ghosh,et al.  Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. , 2002, Molecular cell.

[9]  P. Sansonetti,et al.  Structure and composition of the Shigella flexneri‘needle complex’, a part of its type III secreton , 2001, Molecular microbiology.

[10]  B. Finlay,et al.  Translocated Intimin Receptor and Its Chaperone Interact with ATPase of the Type III Secretion Apparatus of Enteropathogenic Escherichia coli , 2003, Journal of bacteriology.

[11]  G. Cornelis,et al.  The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes , 1996, Molecular microbiology.

[12]  Samuel I. Miller,et al.  Structural characterization of the molecular platform for type III secretion system assembly , 2005, Nature.

[13]  P. Sansonetti,et al.  Induction of type III secretion in Shigella flexneri is associated with differential control of transcription of genes encoding secreted proteins , 1998, The EMBO journal.

[14]  G. Frankel,et al.  Structural and functional studies of the enteropathogenic Escherichia coli type III needle complex protein EscJ , 2005, Molecular microbiology.

[15]  A. Wittinghofer,et al.  Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE , 2002, The EMBO journal.

[16]  M. G. Kim,et al.  Two Pseudomonas syringae Type III Effectors Inhibit RIN4-Regulated Basal Defense in Arabidopsis , 2005, Cell.

[17]  Jorge E. Galán,et al.  Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion , 2001, Nature.

[18]  J. B. Day,et al.  A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis , 1998, Molecular microbiology.

[19]  J. Mekalanos,et al.  ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Aizawa,et al.  Length of the Flagellar Hook and the Capacity of the Type III Export Apparatus , 2001, Science.

[21]  C. Sasakawa,et al.  Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Schuebel,et al.  S. typhimurium Encodes an Activator of Rho GTPases that Induces Membrane Ruffling and Nuclear Responses in Host Cells , 1998, Cell.

[23]  O. Schneewind,et al.  A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. , 1997, Science.

[24]  C. E. Stebbins,et al.  A common structural motif in the binding of virulence factors to bacterial secretion chaperones. , 2006, Molecular cell.

[25]  S. Guadagnini,et al.  Optimization of Virulence Functions Through Glucosylation of Shigella LPS , 2005, Science.

[26]  C. E. Stebbins,et al.  Priming virulence factors for delivery into the host , 2003, Nature Reviews Molecular Cell Biology.

[27]  T. Kimbrough,et al.  Contribution of Salmonella typhimurium type III secretion components to needle complex formation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Christopher M. Bailey,et al.  Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective. , 2005, FEMS microbiology reviews.

[29]  G. Cornelis,et al.  The multitalented type III chaperones: all you can do with 15 kDa. , 2003, FEMS microbiology letters.

[30]  L. Journet,et al.  The Needle Length of Bacterial Injectisomes Is Determined by a Molecular Ruler , 2003, Science.

[31]  F. Cordes,et al.  Helical packing of needles from functionally altered Shigella type III secretion systems. , 2005, Journal of molecular biology.

[32]  G. Cornelis The Yersinia Ysc–Yop 'Type III' weaponry , 2002, Nature Reviews Molecular Cell Biology.

[33]  H. Ochman,et al.  Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[34]  H. Wolf‐Watz,et al.  Delineation and mutational analysis of the Yersinia pseudotuberculosis YopE domains which mediate translocation across bacterial and eukaryotic cellular membranes , 1996, Journal of bacteriology.

[35]  R. Ménard,et al.  The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. , 1994, The EMBO journal.

[36]  J. Galán,et al.  Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium , 1996, Infection and immunity.

[37]  P. Wattiau,et al.  SycE, a chaperone‐like protein of Yersinia enterocolitica involved in the secretion of YopE , 1993, Molecular microbiology.

[38]  H. Wolf‐Watz,et al.  Regulation of type III secretion systems. , 2002, Current opinion in microbiology.

[39]  A. Wittinghofer,et al.  How the Pseudomonas aeruginosa ExoS toxin downregulates Rac , 2001, Nature Structural Biology.

[40]  W. Picking,et al.  The Needle Component of the Type III Secreton of Shigella Regulates the Activity of the Secretion Apparatus* , 2005, Journal of Biological Chemistry.

[41]  K. Hughes,et al.  Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. , 1993, Science.

[42]  C. Sasakawa,et al.  Shigella Spa33 Is an Essential C-ring Component of Type III Secretion Machinery* , 2006, Journal of Biological Chemistry.

[43]  M. Russel,et al.  The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG , 1998, Molecular microbiology.

[44]  K. Aktories,et al.  The N-terminal Domain of Pseudomonas aeruginosaExoenzyme S Is a GTPase-activating Protein for Rho GTPases* , 1999, The Journal of Biological Chemistry.

[45]  Markus R. Wenk,et al.  Structural and biochemical characterization of the type III secretion chaperones CesT and SigE , 2001, Nature Structural Biology.

[46]  E. Hoiczyk,et al.  Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[47]  I. Lambermont,et al.  Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Galán,et al.  Salmonella type III secretion‐associated chaperones confer secretion‐pathway specificity , 2004, Molecular microbiology.

[49]  Jorge E. Galán,et al.  Structural mimicry in bacterial virulence , 2001, Nature.

[50]  F. Booy,et al.  The filamentous type III secretion translocon of enteropathogenic Escherichia coli , 2001, Cellular microbiology.

[51]  R. Macnab Type III flagellar protein export and flagellar assembly. , 2004, Biochimica et biophysica acta.

[52]  M. Pallen,et al.  A novel EspA‐associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells , 1998, The EMBO journal.

[53]  A. Crago,et al.  Salmonella InvG forms a ring‐like multimer that requires the InvH lipoprotein for outer membrane localization , 1998, Molecular microbiology.

[54]  M. Saier Evolution of bacterial type III protein secretion systems. , 2004, Trends in microbiology.

[55]  M. Urbanowski,et al.  A secreted regulatory protein couples transcription to the secretory activity of the Pseudomonas aeruginosa type III secretion system. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  H. Wolf‐Watz,et al.  YscP and YscU Regulate Substrate Specificity of the Yersinia Type III Secretion System , 2003, Journal of bacteriology.

[57]  M. W. Jackson,et al.  Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. , 2005, Journal of molecular biology.

[58]  J. Galán,et al.  Temporal Regulation of Salmonella Virulence Effector Function by Proteasome-Dependent Protein Degradation , 2003, Cell.

[59]  J. Kaper,et al.  SepL, a protein required for enteropathogenic Escherichia coli type III translocation, interacts with secretion component SepD , 2004, Molecular microbiology.

[60]  I. Lambermont,et al.  TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors , 1998, The EMBO journal.

[61]  Tomoko Kubori,et al.  Assembly of the inner rod determines needle length in the type III secretion injectisome , 2006, Nature.

[62]  G. Frankel,et al.  Polarity of Enteropathogenic Escherichia coli EspA Filament Assembly and Protein Secretion , 2005, Journal of bacteriology.

[63]  H. Wolf‐Watz,et al.  The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact‐dependent membrane disrupting activity. , 1996, The EMBO journal.

[64]  S. Müller,et al.  The V-Antigen of Yersinia Forms a Distinct Structure at the Tip of Injectisome Needles , 2005, Science.

[65]  G. Cornelis,et al.  Translocation of a hybrid YopE‐adenylate cyclase from Yersinia enterocolitica into HeLa cells , 1994, Molecular microbiology.

[66]  M. W. Jackson,et al.  The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion , 2005, Molecular microbiology.

[67]  Greg L. Hersch,et al.  Sculpting the Proteome with AAA+ Proteases and Disassembly Machines , 2004, Cell.

[68]  L. Journet,et al.  Bacterial Injectisomes: Needle Length Does Matter , 2005, Science.

[69]  Hans Wolf-Watz,et al.  Molecular characterization of type III secretion signals via analysis of synthetic N‐terminal amino acid sequences , 2002, Molecular microbiology.

[70]  A. Engel,et al.  Double hexameric ring assembly of the type III protein translocase ATPase HrcN , 2006, Molecular microbiology.

[71]  S. He,et al.  Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Tomoko Kubori,et al.  Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein , 2002, Molecular microbiology.

[73]  J. Ruysschaert,et al.  Yersinia enterocolitica type III secretion–translocationsystem: channel formation by secreted Yops , 1999, The EMBO journal.

[74]  J. Galán,et al.  Delivery of epitopes by the Salmonella type III secretion system for vaccine development. , 1998, Science.

[75]  C. E. Stebbins,et al.  Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. , 2000, Molecular cell.

[76]  J. Galán,et al.  Chaperone release and unfolding of substrates in type III secretion , 2005, Nature.

[77]  H. Wolf‐Watz,et al.  Small-Molecule Inhibitors Specifically Targeting Type III Secretion , 2005, Infection and Immunity.

[78]  T. Bergman,et al.  Modulation of Virulence Factor Expression by Pathogen Target Cell Contact , 1996, Science.

[79]  T. Marlovits,et al.  Structural Insights into the Assembly of the Type III Secretion Needle Complex , 2004, Science.

[80]  J. Galán,et al.  A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion , 1999, Nature.

[81]  J. Galán,et al.  Genetic Analysis of Assembly of theSalmonella enterica Serovar Typhimurium Type III Secretion-Associated Needle Complex , 2001, Journal of bacteriology.

[82]  P. Sansonetti,et al.  A secreted anti‐activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri , 2005, Molecular microbiology.

[83]  O. Schneewind,et al.  Substrate recognition of type III secretion machines –testing the RNA signal hypothesis , 2005, Cellular microbiology.

[84]  S. Straley,et al.  LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion , 2002, Molecular microbiology.