Nuclear physics from lattice QCD

I review recent progress in the development of Lattice QCD into a calculational tool for nuclear physics. Lattice QCD is currently the only known way of solving QCD in the low-energy regime, and it promises to provide a solid foundation for the structure and interactions of nuclei directly from QCD.

[1]  Shina Tan Three-boson problem at low energy and Implications for dilute Bose-Einstein condensates , 2007, 0709.2530.

[2]  E. Epelbaum,et al.  Lattice calculations for A = 3 , 4, 6, 12 nuclei using chiral effective field theory , 2010, 1003.5697.

[3]  K. Orginos,et al.  Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions , 2010, 1001.3620.

[4]  M. Wise,et al.  A New expansion for nucleon-nucleon interactions , 1998, nucl-th/9801034.

[5]  A. Ukawa,et al.  Helium nuclei in quenched lattice QCD , 2009, 0912.1383.

[6]  Martin J. Savage,et al.  Precise determination of the I = 2 ππ scattering length from mixed-action lattice QCD , 2007, 0706.3026.

[7]  William Detmold,et al.  Multipion systems in lattice QCD and the three-pion interaction. , 2007, Physical review letters.

[8]  S. Beane,et al.  Evidence for a bound H dibaryon from lattice QCD. , 2010, Physical review letters.

[9]  K. Orginos,et al.  Nucleon Generalized Parton Distributions from Full Lattice QCD , 2007, 0705.4295.

[10]  Nuclear physics from lattice QCD , 2011, 1004.2935.

[11]  H. Hammer,et al.  On the modification of the Efimov spectrum in a finite cubic box , 2009, 0910.2191.

[12]  U. Meißner,et al.  To bind or not to bind: The H-dibaryon in light of chiral effective field theory , 2011, 1109.3590.

[13]  G. Colangelo,et al.  pi pi scattering , 2001, hep-ph/0103088.

[14]  Martin Lüscher,et al.  Schwarz-preconditioned HMC algorithm for two-flavor lattice QCD , 2005, Comput. Phys. Commun..

[15]  W. Detmold,et al.  Method to study complex systems of mesons in lattice QCD , 2010, 1001.2768.

[16]  Herbert Neuberger Exactly massless quarks on the lattice , 1998 .

[17]  Martin J. Savage,et al.  Nuclear Physics from QCD : The Anticipated Impact of Exa-Scale Computing , 2010, 1012.0876.

[18]  W. Detmold,et al.  Lattice QCD study of mixed systems of pions and kaons , 2011, 1103.4362.

[19]  Fukugita,et al.  Hadron scattering lengths in lattice QCD. , 1995, Physical review. D, Particles and fields.

[20]  C. Gattringer,et al.  Hadron spectroscopy with dynamical chirally improved fermions , 2008, 0812.1681.

[21]  Colin Morningstar,et al.  Analytic smearing of SU(3) link variables in lattice QCD , 2004 .

[22]  W. Detmold,et al.  Energy of n identical bosons in a finite volume at O(L{sup -7}) , 2008, 0801.0763.

[23]  G. Parisi,et al.  CONSIDERATIONS ON NUMERICAL ANALYSIS OF QCD , 1983 .

[24]  S. Beane,et al.  The Deuteron and Exotic Two-Body Bound States from Lattice QCD , 2011, 1109.2889.

[25]  Hadronic Interactions from Lattice QCD , 2008, 0805.4629.

[26]  S. C. Pieper,et al.  Quantum Monte Carlo calculations of light nuclei. , 1998, nucl-th/0103005.

[27]  K. Jansen,et al.  The π+π+ scattering length from maximally twisted mass lattice QCD , 2009, 0909.3255.

[28]  M. Luscher,et al.  Locality and exponential error reduction in numerical lattice gauge theory , 2001, hep-lat/0108014.

[29]  G. Fleming What Can Lattice QCD Theorists Learn from NMR Spectroscopists , 2004, hep-lat/0403023.

[30]  Rajamani Narayanan,et al.  A construction of lattice chiral gauge theories , 1994, hep-th/9411108.

[31]  S. Weinberg Pion scattering lengths , 1966 .

[32]  T. Blum,et al.  Nucleon form factors with 2 + 1 flavor dynamical domain-wall fermions , 2009, 0904.2039.

[33]  P. Forcrand Simulating QCD at finite density , 2010, 1005.0539.

[34]  Marcus Bleicher,et al.  Strangeness fluctuations and MEMO production at FAIR , 2008, 0811.4077.

[35]  William Detmold,et al.  High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions , 2009, 0912.4243.

[36]  S. Beane,et al.  I=2 ππ S-wave scattering phase shift from lattice QCD , 2011, 1107.5023.

[37]  Yan-Rui Liu,et al.  Meson-baryon scattering lengths in heavy baryon chiral perturbation theory , 2007 .

[38]  J. Haidenbauer,et al.  Predictions for the strangeness S = -3 and -4 baryon-baryon interactions in chiral effective field theory , 2009, 0907.1395.

[39]  E. Epelbaum,et al.  Nuclear forces in the chiral limit , 2002, nucl-th/0207089.

[40]  L. Maiani,et al.  Final state interactions from euclidean correlation functions , 1990 .

[41]  T. Hatsuda,et al.  Bound H dibaryon in flavor SU(3) limit of lattice QCD. , 2010, Physical review letters.

[42]  K. Orginos,et al.  Nucleon structure in the chiral regime with domain wall fermions on an improved staggered sea , 2006, hep-lat/0610007.

[43]  Heavy quarks on anisotropic lattices: The Charmonium spectrum , 2000, hep-lat/0006019.

[44]  T. Yamazaki,et al.  Two-Nucleon Bound States in Quenched Lattice QCD , 2011, 1105.1418.

[45]  M. Creutz Why rooting fails , 2007, 0708.1295.

[46]  S. Beane,et al.  High statistics analysis using anisotropic clover lattices: Single hadron correlation functions , 2009, 0903.2990.

[47]  T. Hatsuda,et al.  The nuclear force from Monte Carlo simulations of lattice quantum chromodynamics , 2008, 0805.2462.

[48]  D. B. Kaplan A Method for simulating chiral fermions on the lattice , 1992 .

[49]  A renormalisation-group treatment of two-body scattering , 1998, hep-ph/9807302.

[50]  P. Forcrand,et al.  Nuclear physics from strong coupling QCD , 2009, 0912.2524.

[51]  T. Luu Three fermions in a box , 2008, 0810.2331.

[52]  C. Jung Status of dynamical ensemble generation , 2010, 1001.0941.

[53]  Dean Lee Lattice simulations for few- and many-body systems , 2008, 0804.3501.

[54]  S. Roy Exact integral equation for pion-pion scattering involving only physical region partial waves , 1971 .

[55]  R. Young,et al.  Mass of the H dibaryon. , 2011, Physical review letters.

[56]  Claudio Rebbi,et al.  Strange quark content of the nucleon , 2009 .

[57]  P. de Forcrand,et al.  Nuclear physics from lattice QCD at strong coupling. , 2009, Physical review letters.

[58]  S. Beane,et al.  n-Boson Energies at Finite Volume and Three-Boson Interactions , 2007, 0707.1670.

[59]  K. Jansen,et al.  Speeding up the Hybrid-Monte-Carlo algorithm for dynamical fermions , 2001 .

[60]  Yigal Shamir,et al.  Chiral fermions from lattice boundaries , 1993, hep-lat/9303005.

[61]  Oscillatory terms in the domain wall transfer matrix , 2007, 0710.0425.

[62]  Decuplet contribution to the meson–baryon scattering lengths , 2007, hep-ph/0702246.

[63]  Michele Della Morte,et al.  Symmetries and exponential error reduction in Yang-Mills theories on the lattice , 2008, Comput. Phys. Commun..

[64]  G. Zweig,et al.  Representations of the rotation reflection symmetry group of the four-dimensional cubic lattice , 1983 .

[65]  C. Bernard,et al.  Effective field theories for QCD with rooted staggered fermions , 2007, 0712.2560.

[66]  Rajan Gupta Introduction to lattice QCD , 1998, hep-lat/9807028.

[67]  Andre Walker-Loud,et al.  New lessons from the nucleon mass, lattice QCD and heavy baryon chiral perturbation theory , 2008, 0810.0663.

[68]  T. Hatsuda,et al.  Theoretical Foundation of the Nuclear Force in QCD and Its Applications to Central and Tensor Forces in Quenched Lattice QCD Simulations , 2009, 0909.5585.

[69]  M. Lüscher Two-particle states on a torus and their relation to the scattering matrix , 1991 .

[70]  Robert L. Jaffe,et al.  Perhaps a Stable Dihyperon , 1977 .

[71]  Ulli Wolff,et al.  How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation , 1990 .

[72]  A. Walker-Loud,et al.  Universality of mixed action extrapolation formulae , 2007, 0706.0035.

[73]  M A Clark,et al.  Accelerating dynamical-fermion computations using the rational hybrid Monte Carlo algorithm with multiple pseudofermion fields. , 2007, Physical review letters.

[74]  Meson-Baryon Scattering Lengths from Mixed-Action Lattice QCD , 2009, 0907.1913.

[75]  Signatures of S-wave bound-state formation in finite volume , 2006, hep-lat/0610081.

[76]  D. Pleiter,et al.  Axial coupling constant of the nucleon for two flavours of dynamical quarks in finite and infinite volume , 2006, hep-lat/0603028.

[77]  M. Lüscher Volume dependence of the energy spectrum in massive quantum field theories , 1986 .

[78]  Kerson Huang,et al.  Quantum-Mechanical Many-Body Problem with Hard-Sphere Interaction , 1957 .

[79]  Axial symmetries in lattice QCD with Kaplan fermions , 1994, hep-lat/9405004.

[80]  C. Morningstar,et al.  Lattice QCD determination of patterns of excited baryon states , 2007, 0709.0008.

[81]  Quenched spectroscopy with fixed-point and chirally improved fermions , 2003, hep-lat/0307013.

[82]  T. Hatsuda,et al.  Nuclear Force from Lattice QCD , 2006, hep-lat/0610002.

[83]  T. Hatsuda,et al.  Hyperon–nucleon force from lattice QCD , 2008, 0806.1094.

[84]  Tetsuya Takaishi,et al.  Testing and tuning symplectic integrators for the hybrid Monte Carlo algorithm in lattice QCD. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  S. Beane,et al.  PRESENT CONSTRAINTS ON THE H-DIBARYON AT THE PHYSICAL POINT FROM LATTICE QCD , 2011, 1103.2821.

[86]  Christopher E. Thomas,et al.  Highly excited and exotic meson spectrum from dynamical lattice QCD. , 2009, Physical review letters.

[87]  Robert G. Edwards,et al.  Excited State Nucleon Spectrum with Two Flavors of Dynamical Fermions , 2008, 0901.0027.

[88]  M. Lüscher,et al.  Volume dependence of the energy spectrum in massive quantum field theories , 1986 .

[89]  Robert G. Edwards,et al.  First results from 2+1 dynamical quark flavors on an anisotropic lattice: Light-hadron spectroscopy and setting the strange-quark mass , 2008, 0810.3588.

[90]  R. Wiringa,et al.  Accurate nucleon-nucleon potential with charge-independence breaking. , 1995, Physical review. C, Nuclear physics.

[91]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[92]  K. Orginos,et al.  Generalized parton distributions from domain wall valence quarks and staggered sea quarks , 2007, 0710.1373.

[93]  D. Pleiter,et al.  Extracting the rho resonance from lattice QCD simulations at small quark masses , 2008, 0810.5337.

[94]  M. Fukugita,et al.  I=2 pion scattering length from two-pion wave functions , 2005, hep-lat/0503025.

[95]  E. Jenkins,et al.  Baryon chiral perturbation theory using a heavy fermion lagrangian , 1991 .

[96]  William Detmold,et al.  High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems , 2009, 0905.0466.

[97]  S. Beane,et al.  Multipion states in lattice QCD and the charged-pion condensate , 2008, 0803.2728.

[98]  K. Orginos,et al.  Kaon condensation from lattice QCD , 2008, 0807.1856.

[99]  Robert G. Edwards,et al.  Tuning for three flavors of anisotropic clover fermions with stout-link smearing , 2008, 0803.3960.

[100]  C. Michael Adjoint sources in lattice gauge theory , 1985 .

[101]  Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints , 2006, astro-ph/0608360.