Scattered Data Interpolation and Applications: A Tutorial and Survey

The multivariate scattered data interpolation problem is introduced and the reasons for the difficulty of the problem compared to the one dimensional case are discussed. Basic ideas for interpolation (or approximation) of scattered data are introduced. Various types of data sets and some strategies for dealing with some of them are given. Readily available algorithms for the solution of the problem are discussed and suitability for various types of data, along with discussion of situations where they have been useful is given. Some related ideas are briefly mentioned. Throughout there are bountiful references to the existing literature.

[1]  Gregory M. Nielson,et al.  A survey of applications of an affine invariant norm , 1989 .

[2]  M. Buhmann Multivariate interpolation in odd-dimensional euclidean spaces using multiquadrics , 1990 .

[3]  K. Salkauskas $C^1$ >splines for interpolation of rapidly varying data , 1984 .

[4]  J. Meinguet An Intrinsic Approach to Multivariate Spline Interpolation at Arbitrary Points , 1979 .

[5]  D. H. McLain,et al.  Two Dimensional Interpolation from Random Data , 1976, Comput. J..

[6]  R. Schmidt Ein Beitrag zur Flächenapproximation über Unregelmässig Verteilten Daten , 1985 .

[7]  Robert J. Renka,et al.  Algorithm 623: Interpolation on the Surface of a Sphere , 1984, TOMS.

[8]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[9]  K. Bell A refined triangular plate bending finite element , 1969 .

[10]  Jean Meinguet,et al.  A Convolution Approach to Multivariate Representation Formulas , 1979 .

[11]  I. R. H. Jackson Convergence properties of radial basis functions , 1988 .

[12]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[13]  S. Rippa,et al.  Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .

[14]  Gregory M. Nielson,et al.  A method for construction of surfaces under tension , 1984 .

[15]  L. Schumaker Fitting surfaces to scattered data , 1976 .

[16]  Larry L. Schumaker,et al.  A Bibliography of multivariate Approximation , 1987, Topics in Multivariate Approximation.

[17]  R. Franke Smooth Interpolation of Scattered Data by Local Thin Plate Splines , 1982 .

[18]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[19]  Rae A. Earnshaw,et al.  Fundamental Algorithms for Computer Graphics , 1986, NATO ASI Series.

[20]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[21]  G. Matheron Random Functions and their Application in Geology , 1970 .

[22]  J. D. Powell,et al.  Radial basis function approximations to polynomials , 1989 .

[23]  G. Alexits Approximation theory , 1983 .

[24]  J. Mason,et al.  Algorithms for approximation , 1987 .

[25]  S. Singh,et al.  Approximation theory and spline functions , 1984 .

[26]  Robert J. Renka,et al.  Algorithm 624: Triangulation and Interpolation at Arbitrarily Distributed Points in the Plane , 1984, TOMS.

[27]  J. Meinguet Surface Spline Interpolation: Basic Theory and Computational Aspects , 1984 .

[28]  G. Nielson The side-vertex method for interpolation in triangles☆ , 1979 .

[29]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[30]  Richard Franke,et al.  Smooth interpolation of large sets of scattered data , 1980 .

[31]  Tom Lyche,et al.  Mathematical methods in computer aided geometric design , 1989 .

[32]  M. Powell,et al.  Radial basis function interpolation on an infinite regular grid , 1990 .

[33]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[34]  Gregory M. Nielson,et al.  Coordinate Free scattered Data interpolation , 1987, Topics in Multivariate Approximation.

[35]  Hans Hagen,et al.  Interpolation of scattered data on closed surfaces , 1990, Comput. Aided Geom. Des..

[36]  M. Newman,et al.  Interpolation and approximation , 1965 .

[37]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[38]  Hiroshi Akima,et al.  A Method of Bivariate Interpolation and Smooth Surface Fitting for Irregularly Distributed Data Points , 1978, TOMS.

[39]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[40]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[41]  J. Wendelberger,et al.  The Computation of Laplacian Smoothing Splines with Examples. , 1981 .

[42]  John L. Junkins,et al.  Modeling in n dimensions using a weighting function approach , 1974 .

[43]  F. J. Narcowich,et al.  Norms of inverses and condition numbers for matrices associated with scattered data , 1991 .

[44]  G. P. Cressman AN OPERATIONAL OBJECTIVE ANALYSIS SYSTEM , 1959 .

[45]  G. Nielson A method for interpolating scattered data based upon a minimum norm network , 1983 .

[46]  R. Franke Locally Determined Smooth Interpolation at Irregularly Spaced Points in Several Variables , 1977 .

[47]  Helmut Pottmann,et al.  Modified multiquadric methods for scattered data interpolation over a sphere , 1990, Comput. Aided Geom. Des..

[48]  H. J. Thiébaux Spatial Objective Analysis , 1989 .

[49]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[50]  Gregory M. Nielson,et al.  Interpolation over a sphere based upon a minimum norm network , 1987, Comput. Aided Geom. Des..

[51]  M. Buhmann Convergence of Univariate Quasi-Interpolation Using Multiquadrics , 1988 .

[52]  T. A. Foley Interpolation and approximation of 3-D and 4-D scattered data , 1987 .

[53]  D. H. McLain,et al.  Drawing Contours from Arbitrary Data Points , 1974, Comput. J..

[54]  M. A. Sabin,et al.  Contouring — the State of the Art , 1985 .

[55]  K. Brodlie Mathematical Methods in Computer Graphics and Design , 1980 .

[56]  R. E. Barnhill,et al.  Three- and four-dimensional surfaces , 1984 .

[57]  R. N. Desmarais,et al.  Interpolation using surface splines. , 1972 .

[58]  Gary Herron A Characterization of Certain $C^1 $ Discrete Triangular Interpolants , 1985 .

[59]  C. Chui,et al.  Approximation Theory II , 1976 .

[60]  W. J. Gordon,et al.  Shepard’s method of “metric interpolation” to bivariate and multivariate interpolation , 1978 .

[61]  Thomas A. Foley,et al.  Weighted bicubic spline interpolation to rapidly varying data , 1987, TOGS.

[62]  John R. McMahon Knot selection for least squares approximation using thin plate splines. , 1986 .

[63]  I. K Crain,et al.  Treatment of non-equispaced two-dimensional data with a digital computer , 1967 .

[64]  T. A. Foley,et al.  Three-stage interpolation to scattered data , 1984 .

[65]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[66]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[67]  Gregory M. Nielson,et al.  Terrain simulation using a model of stream erosion , 1988, SIGGRAPH.

[68]  Larry L. Schumaker,et al.  Topics in Multivariate Approximation , 1987 .

[69]  J. Meinguet Multivariate interpolation at arbitrary points made simple , 1979 .

[70]  Richard Franke,et al.  The use of observed data for the initial-value problem in numerical weather prediction , 1988 .

[71]  Charles L. Lawson,et al.  $C^1$ surface interpolation for scattered data on a sphere , 1984 .

[72]  Gerald Farin,et al.  SMOOTH INTERPOLATION TO SCATTERED 3D DATA. , 1983 .

[73]  G. Nielson Minimum Norm Interpolation in Triangles , 1980 .

[74]  A. Méhauté,et al.  A knot removal strategy for scattered data in R 2 , 1989 .

[75]  Richard Franke,et al.  Sources of Error in Objective Analysis , 1985 .

[76]  Thomas A. Foley,et al.  Scattered data interpolation and approximation with error bounds , 1986, Comput. Aided Geom. Des..

[77]  Alan J. Pickrell Representation of Hydrographic Surveys and Ocean Bottom Topography by Analytical Models. , 1979 .

[78]  W. Schempp,et al.  Multivariate Approximation Theory IV , 1989 .

[79]  O. Dubrule Comparing splines and kriging , 1984 .

[80]  A. K. Cline,et al.  A triangle-based $C^1$ interpolation method , 1984 .

[81]  Licia Lenarduzzi,et al.  A new method in order of determine the most significant members within a large sample, in problems of surface approximations , 1986 .

[82]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[83]  T. Lyche,et al.  A Data-Reduction Strategy for Splines with Applications to the Approximation of Functions and Data , 1988 .

[84]  Gregory M. Nielson,et al.  Visualizing functions over a sphere , 1990, IEEE Computer Graphics and Applications.

[85]  G. Wahba,et al.  Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .

[86]  Richard Franke,et al.  Thin plate splines with tension , 1985, Comput. Aided Geom. Des..