Challenges of multi-target tracking for space situational awareness

The tracking of space objects poses unique challenges when compared to traditional applications. Direct application of standard multi-target tracking models fails to yield accurate results for the case of space objects. For example, dynamic models for traditional applications require simple, often linear, discrete-time models. This is not the case for space objects where motion is nonlinear and computation cost is too prohibitive for current Monte Carlo filters. This paper describes the multitarget tracking problem for space objects and summarizes system requirements for space situational awareness. Traditional multitarget filter models are compared to corresponding methods for space object tracking in the context of tracking performance via the δ-Generalized Labeled Multi-Bernoulli (δ-GLMB) filter. Using these tests, key research challenges for space situational awareness are discussed.

[1]  James Agi Woodburn A Description of Filters for Minimizing the Time Required for Orbital Conjunction Computations , 2009 .

[2]  Aubrey B. Poore,et al.  Gaussian Sum Filters for Space Surveillance: Theory and Simulations , 2011 .

[3]  N. Johnson,et al.  NASA's new breakup model of evolve 4.0 , 2001 .

[4]  Ba-Ngu Vo,et al.  Closed-Form Solutions to Forward–Backward Smoothing , 2012, IEEE Transactions on Signal Processing.

[5]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[6]  G. Beutler,et al.  Optical observations of space debris in GEO and in highly-eccentric orbits , 2002 .

[7]  Penina Axelrad,et al.  Measurement-based Birth Model for a Space Object Cardinalized Probability Hypothesis Density Filter , 2014 .

[8]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[9]  H. Klinkrad Space Debris: Models and Risk Analysis , 2006 .

[10]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[11]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[12]  Ba-Ngu Vo,et al.  A Partially Uniform Target Birth Model for Gaussian Mixture PHD/CPHD Filtering , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[14]  Jared M. Maruskin,et al.  Correlation of Optical Observations of Objects in Earth Orbit , 2009 .

[15]  Robin J. Evans,et al.  A Particle Marginal Metropolis-Hastings Multi-Target Tracker , 2014, IEEE Transactions on Signal Processing.

[16]  Aubrey B. Poore,et al.  Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies , 2013 .

[17]  James L. Garrison,et al.  Statistical Orbit Determination using the Particle Filter for Incorporating Non-Gaussian Uncertainties , 2012 .

[18]  Alessandro Rossi,et al.  Orbit determination of space debris: admissible regions , 2007 .

[19]  Kyle J. DeMars,et al.  Probabilistic Initial Orbit Determination Using Gaussian Mixture Models , 2013 .

[20]  B. Tapley,et al.  Statistical Orbit Determination , 2004 .

[21]  Kyle J. DeMars,et al.  An AEGIS-FISST Algorithm for Multiple Object Tracking in Space Situational Awareness , 2012 .

[22]  Ba-Ngu Vo,et al.  The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations , 2009, IEEE Transactions on Signal Processing.

[23]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[24]  Moriba Jah,et al.  Mutual Application of Joint Probabilistic Data Association, Filtering, and Smoothing Techniques for Robust Multiple Space Object Tracking (Invited) , 2014 .

[25]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[26]  Frederick A. Leve,et al.  Astrometric and photometric data fusion for inactive space object mass and area estimation , 2014 .

[27]  John L. Junkins,et al.  Non-Gaussian error propagation in orbital mechanics , 1996 .

[28]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[29]  Daniel J. Scheeres,et al.  An Optimal Control Based Estimator for Maneuver and Natural Dynamics Reconstruction , 2013 .

[30]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[31]  Daniel J. Scheeres,et al.  Association of optical tracklets from a geosynchronous belt survey via the direct Bayesian admissible region approach , 2014 .

[32]  Steven Dubowsky,et al.  State, shape, and parameter estimation of space objects from range images , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[33]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[34]  Ba-Ngu Vo,et al.  AAS 15-413 A LABELED MULTI-BERNOULLI FILTER FOR SPACE OBJECT TRACKING , 2015 .

[35]  Kyle J. DeMars,et al.  Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems , 2013 .

[36]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.