On the complexity of Sperner’s Lemma

We present several results on the complexity of various forms of Sperner’s Lemma. In the black-box model of computing, we exhibit a deterministic algorithm for Sperner problems over pseudo-manifolds of arbitrary dimension. The query complexity of our algorithm is essentially linear in the separation number of the skeleton graph of the manifold and the size of its boundary. As a corollary we get an O( √ n) deterministic query algorithm for the black-box version of the problem 2D-SPERNER, a well studied member of Papadimitriou’s complexity class PPAD. This upper bound matches the Ω( √ n) deterministic lower bound of Crescenzi and Silvestri. In another black-box result we prove for the same problem an Ω( 4 √ n) lower bound for its probabilistic, and an Ω( 8 √ n) lower bound for its quantum query complexity, showing that all these measures are polynomially related. Finally we explicit Sperner problems on a 2-dimensional pseudo-manifold and prove that they are complete respectively for the classes PPAD, PPADS and PPA. This is the first time that a 2-dimensional Sperner problem is proved to be complete for any of the polynomial parity argument classes.

[1]  Mario Szegedy,et al.  All Quantum Adversary Methods Are Equivalent , 2005, ICALP.

[2]  Joshua Buresh-Oppenheim,et al.  Relativized NP search problems and propositional proof systems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[3]  Scott Aaronson,et al.  Quantum lower bound for the collision problem , 2001, STOC '02.

[4]  Pierluigi Crescenzi,et al.  Sperner's lemma and robust machines , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[5]  Ethan D. Bloch Mod 2 degree and a generalized No Retraction Theorem , 2006 .

[6]  Scott Aaronson,et al.  Quantum lower bounds for the collision and the element distinctness problems , 2004, JACM.

[7]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[8]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[9]  K. Fan Simplicial maps from an orientable n-pseudomanifold into Sm with the octahedral triangulation* , 1967 .

[10]  Miklos Santha,et al.  Quantum and Classical Query Complexities of Local Search Are Polynomially Related , 2004, STOC '04.

[11]  Christos H. Papadimitriou,et al.  On Total Functions, Existence Theorems and Computational Complexity , 1991, Theor. Comput. Sci..

[12]  Jozef Sirán,et al.  Triangular embeddings of complete graphs from graceful labellings of paths , 2007, J. Comb. Theory B.

[13]  Frédéric Magniez,et al.  Lower bounds for randomized and quantum query complexity using Kolmogorov arguments , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[14]  Craig A. Tovey,et al.  Dividing and Conquering the Square , 1993, Discret. Appl. Math..

[15]  Andris Ambainis,et al.  Polynomial degree vs. quantum query complexity , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[16]  A. Thomason Hamiltonian Cycles and Uniquely Edge Colourable Graphs , 1978 .

[17]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[18]  Andris Ambainis,et al.  Quantum lower bounds by quantum arguments , 2000, STOC '00.

[19]  Michelangelo Grigni,et al.  A Sperner lemma complete for PPA , 2001, Inf. Process. Lett..

[20]  Scott Aaronson,et al.  Lower bounds for local search by quantum arguments , 2003, STOC '04.

[21]  Christos H. Papadimitriou,et al.  On graph-theoretic lemmata and complexity classes , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[22]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[23]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[24]  Jonathan A. Kelner Spectral partitioning, eigenvalue bounds, and circle packings for graphs of bounded genus , 2004, STOC '04.

[25]  Donna Crystal Llewellyn,et al.  Local optimization on graphs , 1989, Discret. Appl. Math..

[26]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[27]  Russell Impagliazzo,et al.  The relative complexity of NP search problems , 1995, STOC '95.

[28]  E. Sperner Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .