Fast Spectral Clustering with Random Projection and Sampling
暂无分享,去创建一个
[1] Jitendra Malik,et al. Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[2] Heikki Mannila,et al. Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.
[3] Dmitriy Fradkin,et al. Experiments with random projections for machine learning , 2003, KDD '03.
[4] Danijel Skocaj,et al. Weighted and robust incremental method for subspace learning , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[5] M. Fiedler. Algebraic connectivity of graphs , 1973 .
[6] Bernhard Schölkopf,et al. Sampling Techniques for Kernel Methods , 2001, NIPS.
[7] J. Bunch,et al. Updating the singular value decomposition , 1978 .
[8] Jitendra Malik,et al. Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[9] Inderjit S. Dhillon,et al. Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.
[10] Philip I. Davies,et al. Updating the singular value decomposition , 2004 .
[11] Guy L. Scott,et al. Feature grouping by 'relocalisation' of eigenvectors of the proximity matrix , 1990, BMVC.
[12] Matthew Brand,et al. Fast Online SVD Revisions for Lightweight Recommender Systems , 2003, SDM.
[13] Chris H. Q. Ding,et al. A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.
[14] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .
[15] B. S. Manjunath,et al. An Eigenspace Update Algorithm for Image Analysis , 1997, CVGIP Graph. Model. Image Process..
[16] Michael I. Jordan,et al. On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.
[17] Mads Nielsen,et al. Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.
[18] Sridhar Mahadevan. Fast Spectral Learning using Lanczos Eigenspace Projections , 2008, AAAI.
[19] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[20] Matthew Brand,et al. Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.
[21] Edward Y. Chang,et al. Parallel Spectral Clustering , 2008, ECML/PKDD.
[22] Nando de Freitas,et al. Fast Krylov Methods for N-Body Learning , 2005, NIPS.
[23] Andrew B. Kahng,et al. New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[24] Danijel Skocaj,et al. Incremental and robust learning of subspace representations , 2008, Image Vis. Comput..
[25] Pietro Perona,et al. Self-Tuning Spectral Clustering , 2004, NIPS.
[26] Michael W. Berry,et al. Large-Scale Sparse Singular Value Computations , 1992 .
[27] Matthias W. Seeger,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[28] Peter A. Flach,et al. Evaluation Measures for Multi-class Subgroup Discovery , 2009, ECML/PKDD.
[29] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[30] Petros Drineas,et al. On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..
[31] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[32] Ulrike von Luxburg,et al. A tutorial on spectral clustering , 2007, Stat. Comput..