Fast Spectral Clustering with Random Projection and Sampling

This paper proposes a fast spectral clustering method for large-scale data. In the present method, random projection and random sampling techniques are adopted for reducing the data dimensionality and cardinality. The computation time of the present method is quasi-linear with respect to the data cardinality. The clustering result can be updated with a small computational cost when data samples or random samples are appended or removed.

[1]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Heikki Mannila,et al.  Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.

[3]  Dmitriy Fradkin,et al.  Experiments with random projections for machine learning , 2003, KDD '03.

[4]  Danijel Skocaj,et al.  Weighted and robust incremental method for subspace learning , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[6]  Bernhard Schölkopf,et al.  Sampling Techniques for Kernel Methods , 2001, NIPS.

[7]  J. Bunch,et al.  Updating the singular value decomposition , 1978 .

[8]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[10]  Philip I. Davies,et al.  Updating the singular value decomposition , 2004 .

[11]  Guy L. Scott,et al.  Feature grouping by 'relocalisation' of eigenvectors of the proximity matrix , 1990, BMVC.

[12]  Matthew Brand,et al.  Fast Online SVD Revisions for Lightweight Recommender Systems , 2003, SDM.

[13]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[14]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[15]  B. S. Manjunath,et al.  An Eigenspace Update Algorithm for Image Analysis , 1997, CVGIP Graph. Model. Image Process..

[16]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[17]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[18]  Sridhar Mahadevan Fast Spectral Learning using Lanczos Eigenspace Projections , 2008, AAAI.

[19]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[20]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[21]  Edward Y. Chang,et al.  Parallel Spectral Clustering , 2008, ECML/PKDD.

[22]  Nando de Freitas,et al.  Fast Krylov Methods for N-Body Learning , 2005, NIPS.

[23]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[24]  Danijel Skocaj,et al.  Incremental and robust learning of subspace representations , 2008, Image Vis. Comput..

[25]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[26]  Michael W. Berry,et al.  Large-Scale Sparse Singular Value Computations , 1992 .

[27]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[28]  Peter A. Flach,et al.  Evaluation Measures for Multi-class Subgroup Discovery , 2009, ECML/PKDD.

[29]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[30]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[31]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[32]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..