On the stability of receding horizon control for continuous-time stochastic systems

Abstract We study the stability of receding horizon control for continuous-time non-linear stochastic differential equations. We illustrate the results with a simulation example in which we employ receding horizon control to design an investment strategy to repay a debt.

[1]  J. Janssen,et al.  Deterministic and Stochastic Optimal Control , 2013 .

[2]  John Lygeros,et al.  Stochastic Receding Horizon Control With Bounded Control Inputs: A Vector Space Approach , 2009, IEEE Transactions on Automatic Control.

[3]  John Lygeros,et al.  Monte Carlo Optimization for Conflict Resolution in Air Traffic Control , 2006, IEEE Transactions on Intelligent Transportation Systems.

[4]  John Lygeros,et al.  Stochastic receding horizon control with output feedback and bounded controls , 2012, Autom..

[5]  James A. Primbs,et al.  Dynamic hedging of basket options under proportional transaction costs using receding horizon control , 2009, Int. J. Control.

[6]  B. Øksendal Stochastic Differential Equations , 1985 .

[7]  Jan M. Maciejowski,et al.  Simulation‐based Bayesian optimal design of aircraft trajectories for air traffic management , 2010 .

[8]  John Lygeros,et al.  On mean square boundedness of stochastic linear systems with bounded controls , 2012, Syst. Control. Lett..

[9]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[10]  H. Kushner ON THE STABILITY OF STOCHASTIC DYNAMICAL SYSTEMS. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[11]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[12]  Basil Kouvaritakis,et al.  Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints , 2009, Autom..

[13]  Riccardo Scattolini,et al.  Stabilizing model predictive control of nonlinear continuous time systems , 2003, Annu. Rev. Control..

[14]  H. Pham On some recent aspects of stochastic control and their applications , 2005, math/0509711.

[15]  Herbert G. Tanner,et al.  Stochastic receding horizon control for robots with probabilistic state constraints , 2012, 2012 IEEE International Conference on Robotics and Automation.

[16]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[17]  John Lygeros,et al.  NMPC for Complex Stochastic Systems Using a Markov Chain Monte Carlo Approach , 2007 .

[18]  Giordano Pola,et al.  A Stochastic Reachability Approach to Portfolio Construction in Finance Industry , 2012, IEEE Transactions on Control Systems Technology.

[19]  Andrea Lecchini-Visintini,et al.  Air traffic management: Challenges and opportunities for advanced control , 2010 .

[20]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Suboptimal Control: A Survey from ADP to MPC , 2005, Eur. J. Control.

[21]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[22]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[23]  James A. Primbs,et al.  Stochastic Receding Horizon Control of Constrained Linear Systems With State and Control Multiplicative Noise , 2007, IEEE Transactions on Automatic Control.

[24]  Iain Smears,et al.  On the Convergence of Finite Element Methods for Hamilton-Jacobi-Bellman Equations , 2011, SIAM J. Numer. Anal..

[25]  V. Borkar Controlled diffusion processes , 2005, math/0511077.

[26]  C. C. Chen,et al.  On receding horizon feedback control , 1981, Autom..

[27]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.