Achromatic vision in the honeybee at low light intensities

Summary1.Dark adapted honeybees (Apis mellifera camica) were trained in a T-maze to discriminate spectral light stimuli (λ=533, 430, and 413 nm) from dark or from an achromatic white light stimulus.2.Bees trained to discriminate a spectral stimulus from an equally bright white light respond to the spectral stimulus as if it were the white stimulus within a certain range of intensities. This range lies between the threshold for detection of light (the achromatic threshold) and that for determination of color (the chromatic threshold); it is termed the achromatic interval. Thus the detection of spectral stimuli has two thresholds; a lower one for the absolute detection of the stimulus and a higher one for the perception of color hue. The achromatic interval for wavelengths λ=533, 430, and 413 nm is≃1.5 log10 units of light intensity.3.Trained responses to spectral stimuli disappear at high stimulus intensities. Also, bees can not be trained to spectral lights of high intensity (>2 log10 intensity units above color vision threshold). This bright light effect is attributed to the specific response function of the lamina monopolar cells.4.Achromatic vision is explicable in terms of known characteristics of receptor and neural organization in the bee color vision system. It is concluded that bees pool output of all receptors from a single ommatidium in a neural strategy which produces an achromatic signal. Bees use this neurally derived achromatic signal for orientation at light intensities near visual threshold.

[1]  Allan W. Snyder,et al.  Spatial information capacity of compound eyes , 2004, Journal of comparative physiology.

[2]  Walter Kaiser,et al.  Directionally selective motion detecting units in the optic lobe of the honeybee , 1970, Zeitschrift für vergleichende Physiologie.

[3]  M A BOUMAN,et al.  Some color naming experiments for red and green monochromatic lights. , 1957, Journal of the Optical Society of America.

[4]  H. Hertel Chromatic properties of identified interneurons in the optic lobes of the bee , 1980, Journal of comparative physiology.

[5]  R. Menzel,et al.  Luminance dependence of pigment color discrimination in bees , 1981, Journal of comparative physiology.

[6]  R. Massof A quantum fluctuation model for foveal color thresholds , 1977, Vision Research.

[7]  Otto von Helversen,et al.  Der Polarisationsempfänger im Bienenauge: ein Ultraviolettrezeptor , 1974, Journal of comparative physiology.

[8]  Karl Daumer,et al.  Reizmetrische Untersuchung des Farbensehens der Bienen , 1956, Zeitschrift für vergleichende Physiologie.

[9]  R. Menzel Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica) , 1967, Zeitschrift für vergleichende Physiologie.

[10]  R. Menzel Spectral sensitivity of monopolar cells in the bee lamina , 1974, Journal of comparative physiology.

[11]  W. Kaiser,et al.  The participation of all three colour receptors in the phototactic behaviour of fixed walking honeybees , 2004, Journal of comparative physiology.

[12]  Allan W. Snyder,et al.  Polarised light detection in the bee,Apis mellifera , 1974, Journal of comparative physiology.

[13]  H. Velden,et al.  The number of quanta necessary for the perception of light of the human eye. , 1946 .

[14]  W. Ribi,et al.  The first optic ganglion of the bee , 1975, Cell and Tissue Research.

[15]  R. Menzel,et al.  Spectral response of moving detecting and “Sustaining” fibres in the optic lobe of the bee , 1973, Journal of comparative physiology.

[16]  T. Labhart Behavioral analysis of light intensity discrimination and spectral sensitivity in the honey bee,Apis mellifera , 1974, Journal of comparative physiology.

[17]  K. Frisch Der Farbensinn und Formensinn der Biene , 1914 .

[18]  R. Menzel,et al.  Visual interneurons in the median protocerebrum of the bee , 2004, Journal of comparative physiology.

[19]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[20]  G. Horridge The Compound eye and vision of insects , 1975 .

[21]  Theodore E. Cohn,et al.  Quantum fluctuation limit in foveal vision , 1976, Vision Research.

[22]  R. Menzel Spectral Sensitivity and Color Vision in Invertebrates , 1979 .

[23]  R. Menzel,et al.  Chromatic properties of interneurons in the optic lobes of the bee , 1977, Journal of comparative physiology.

[24]  Otto von Helversen,et al.  Zur spektralen Unterschiedsempfindlichkeit der Honigbiene , 1972, Journal of comparative physiology.

[25]  S. Laughlin,et al.  Structure and function of the fused rhabdom , 1973, Journal of comparative physiology.

[26]  H. A. VAN DER VELDEN,et al.  The number of quanta necessary for the perception of light of the human eye. , 1946, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.