Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhancement

In this paper, we intend to implement a class of fractional differential masks with high-precision. Thanks to two commonly used definitions of fractional differential for what are known as Grumwald-Letnikov and Riemann-Liouville, we propose six fractional differential masks and present the structures and parameters of each mask respectively on the direction of negative x-coordinate, positive x-coordinate, negative y-coordinate, positive y-coordinate, left downward diagonal, left upward diagonal, right downward diagonal, and right upward diagonal. Moreover, by theoretical and experimental analyzing, we demonstrate the second is the best performance fractional differential mask of the proposed six ones. Finally, we discuss further the capability of multiscale fractional differential masks for texture enhancement. Experiments show that, for rich-grained digital image, the capability of nonlinearly enhancing complex texture details in smooth area by fractional differential-based approach appears obvious better than by traditional integral-based algorithms.

[1]  Reinhard Koch,et al.  Automatic 3D model acquisition from uncalibrated image sequences , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[2]  S. Manabe A Suggestion of Fractional-Order Controller for Flexible Spacecraft Attitude Control , 2002 .

[3]  Yangquan Chen,et al.  A new IIR-type digital fractional order differentiator , 2003, Signal Process..

[4]  西本 勝之,et al.  Fractional calculus : integrations and differentiations of arbitrary order , 1984 .

[5]  Ingo Schäfer,et al.  Fractional Calculus via Functional Calculus: Theory and Applications , 2002 .

[6]  Weixing Wang,et al.  Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation , 2008, Science in China Series F: Information Sciences.

[7]  Michael Werman,et al.  Multiresolution Textures from Image Sequences , 1997, IEEE Computer Graphics and Applications.

[8]  Ying Huang,et al.  Fractional wave packet transform , 1996, 1996 IEEE Digital Signal Processing Workshop Proceedings.

[9]  M. Werman,et al.  Highlight and Re ection-Independent Multiresolution Textures from Image Sequences , 1997 .

[10]  Linfei Chen,et al.  Image encryption with fractional wavelet packet method , 2008 .

[11]  Hayit Greenspan,et al.  Image enhancement by nonlinear extrapolation in frequency space , 2000, IEEE Trans. Image Process..

[12]  N. Engheta On fractional calculus and fractional multipoles in electromagnetism , 1996 .

[13]  Victoria Interrante,et al.  Directional enhancement in texture-based vector field visualization , 2006, GRAPHITE '06.

[14]  Hari M. Srivastava,et al.  Fractional calculus operators and their applications involving power functions and summation of series , 1997 .

[15]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[16]  Zhou Ji-liu,et al.  Research on Application of Fractional Calculus , 2011 .

[17]  Jean-Bernard Martens,et al.  Local orientation analysis in images by means of the Hermite transform , 1997, IEEE Trans. Image Process..

[18]  Joachim Weikert,et al.  Multiscale Texture Enhancement , 1995, CAIP.

[19]  Yifei Pu,et al.  Fractional Calculus Approach to Texture of Digital Image , 2006, 2006 8th international Conference on Signal Processing.

[20]  Chien-Cheng Tseng,et al.  Design of fractional order digital FIR differentiators , 2001, IEEE Signal Processing Letters.

[21]  B. West Fractional Calculus in Bioengineering , 2007 .

[22]  Rachid Harba,et al.  nth-order fractional Brownian motion and fractional Gaussian noises , 2001, IEEE Trans. Signal Process..

[23]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[24]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[25]  Dennis M. Healy,et al.  Modern signal processing , 2002 .

[26]  Bruce J. West,et al.  Fractional Calculus and the Evolution of Fractal Phenomena , 1999 .

[27]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[28]  K. Krippendorff Mathematical Theory of Communication , 2009 .

[29]  Timothy F. Cootes,et al.  Texture enhanced appearance models , 2007, Comput. Vis. Image Underst..

[30]  P. Butzer,et al.  AN INTRODUCTION TO FRACTIONAL CALCULUS , 2000 .

[31]  Michal Irani,et al.  Super resolution from image sequences , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[32]  Jean-Bernard Martens,et al.  The Hermite transform-theory , 1990, IEEE Trans. Acoust. Speech Signal Process..

[33]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[34]  Yuan Xiao,et al.  Structuring analog fractance circuit for 1/2 order fractional calculus , 2005, 2005 6th International Conference on ASIC.

[35]  Thierry Blu,et al.  Fractional Splines and Wavelets , 2000, SIAM Rev..

[36]  Etienne Barnard,et al.  Related approaches to gradient-based thresholding , 1993, Pattern Recognit. Lett..

[37]  Peter Schröder,et al.  Spherical Wavelets: Texture Processing , 1995, Rendering Techniques.

[38]  Simon Haykin,et al.  Modern signal processing , 1988 .

[39]  Daniel K. GORDONt,et al.  A texture-enhancement procedure for separating orchard from forest in Thematic Mapper data , 1986 .

[40]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[41]  Azriel Rosenfeld,et al.  Histogram modification for threshold selection , 1977 .

[42]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[43]  F. Tatom THE RELATIONSHIP BETWEEN FRACTIONAL CALCULUS AND FRACTALS , 1995 .

[44]  Haldun M. Özaktas,et al.  The fractional fourier transform , 2001, 2001 European Control Conference (ECC).

[45]  Kenneth S. Miller,et al.  Derivatives of Noninteger Order , 1995 .

[46]  Sabine Dippel,et al.  Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform , 2002, IEEE Transactions on Medical Imaging.

[47]  E. R. Love,et al.  Fractional Derivatives of Imaginary Order , 1971 .

[48]  Jean-Bernard Martens The Hermite transform-applications , 1990, IEEE Trans. Acoust. Speech Signal Process..

[49]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[50]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[51]  Zhou Ji-liu,et al.  Five Numerical Algorithms of Fractional Calculus Applied in Modern Signal Analyzing and Processing , 2005 .

[52]  Fionn Murtagh,et al.  Gray and color image contrast enhancement by the curvelet transform , 2003, IEEE Trans. Image Process..

[53]  Shyang Chang,et al.  Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification , 1997, IEEE Trans. Image Process..

[54]  Pu Yi-Fei,et al.  Implement Any Fractional Order Neural-type Pulse Oscillator with Net-grid Type Analog Fractance Circuit , 2006 .

[55]  A. A. D. Canas,et al.  Enhancement of sand dune texture from Landsat imagery using difference of Gaussian filter , 1991 .

[56]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[57]  Luciano Vieira Dutra,et al.  Texture enhancement of Synthetic Aperture Radar (SAR) images with speckle noise reduction filters , 1991 .

[58]  N. Engheia On the role of fractional calculus in electromagnetic theory , 1997 .

[59]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[60]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[61]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[62]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[63]  Andrew F. Laine,et al.  Wavelets for contrast enhancement of digital mammography , 1995 .

[64]  Olof Bryngdahl,et al.  Control of texture in image halftoning , 1996 .

[65]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .

[66]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[67]  Jan J. Gerbrands,et al.  Transition region determination based thresholding , 1991, Pattern Recognit. Lett..