Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?

The organization and mining of malaria genomic and post-genomic data is important to significantly increase the knowledge of the biology of its causative agents, and is motivated, on a longer term, by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should, therefore, be as reliable and versatile as possible. In this context, five aspects of the organization and mining of malaria genomic and post-genomic data were examined: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes, particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Recent progress towards a grid-enabled chemogenomic knowledge space is discussed.

[1]  Tim Hubbard Finishing the euchromatic sequence of the human genome , 2004 .

[2]  P. Reiter,et al.  From Shakespeare to Defoe: malaria in England in the Little Ice Age. , 2000, Emerging infectious diseases.

[3]  J Mottram,et al.  Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. , 2000, Chemistry & biology.

[4]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[5]  Robert G. Ridley,et al.  Medical need, scientific opportunity and the drive for antimalarial drugs , 2002, Nature.

[6]  Osvaldo Andrade Santos-Filho,et al.  Molecular modeling of wild-type and antifolate resistant mutant Plasmodium falciparum DHFR. , 2002, Biophysical chemistry.

[7]  Ori Sasson,et al.  ProtoNet: hierarchical classification of the protein space , 2003, Nucleic Acids Res..

[8]  J. Palmer,et al.  A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.

[9]  Nicholas J. White Drug resistance in malaria , 1998 .

[10]  Geoffrey J. Barton,et al.  GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes , 2004, BMC Bioinformatics.

[11]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[12]  Christopher A Lipinski,et al.  Chris Lipinski discusses life and chemistry after the Rule of Five. , 2003, Drug discovery today.

[13]  David Mitchell,et al.  The genome of Plasmodium falciparum , 2007 .

[14]  Wim G J Hol,et al.  Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes. , 2006, Molecular and biochemical parasitology.

[15]  Joanna Owens,et al.  Chris Lipinski discusses life and chemistry after the Rule of Five. , 2003 .

[16]  Stuart L Schreiber,et al.  Using genome-wide transcriptional profiling to elucidate small-molecule mechanism. , 2005, Current opinion in chemical biology.

[17]  Geoffrey I. McFadden,et al.  Plastid in human parasites , 1996, Nature.

[18]  John R Yates,et al.  A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses , 2005, Science.

[19]  R J Fletterick,et al.  Structure-based design of parasitic protease inhibitors. , 1996, Bioorganic & medicinal chemistry.

[20]  Anton J. Enright,et al.  Protein families and TRIBES in genome sequence space. , 2003, Nucleic acids research.

[21]  G. McFadden,et al.  The apicoplast: a review of the derived plastid of apicomplexan parasites. , 2005, Current issues in molecular biology.

[22]  J. Bonfield,et al.  Finishing the euchromatic sequence of the human genome , 2004, Nature.

[23]  Philippe Ortet,et al.  A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pair-wise Z-score probabilities , 2005, BMC Bioinformatics.

[24]  B. Barrell,et al.  A Re-Annotation of the Saccharomyces Cerevisiae Genome , 2001, Comparative and functional genomics.

[25]  S. Lampel,et al.  The druggable genome: an update. , 2005, Drug discovery today.

[26]  Martin Hofmann-Apitius,et al.  Grid-Added Value to Address Malaria , 2006, IEEE Transactions on Information Technology in Biomedicine.

[27]  Nathan Linial,et al.  ProtoMap: automatic classification of protein sequences and hierarchy of protein families , 2000, Nucleic Acids Res..

[28]  Bindu Gajria,et al.  PlasmoDB: The Plasmodium Genome Resource , 2005 .

[29]  Xiaoshu Wang,et al.  From XML to RDF: how semantic web technologies will change the design of 'omic' standards , 2005, Nature Biotechnology.

[30]  Michel Dumontier,et al.  CO: A chemical ontology for identification of functional groups and semantic comparison of small molecules , 2005, FEBS letters.

[31]  Marie-Agnès Dillies,et al.  Transcriptome analysis of antigenic variation in Plasmodium falciparum - var silencing is not dependent on antisense RNA , 2005, Genome Biology.

[32]  Eric Maréchal,et al.  Construction of non-symmetric substitution matrices derived from proteomes with biased amino acid distributions. , 2005, Comptes rendus biologies.

[33]  N. Tomioka,et al.  Lead discovery of inhibitors of the dihydrofolate reductase domain of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. , 1997, Biochemical and biophysical research communications.

[34]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[35]  D. Lipman,et al.  Rapid and sensitive protein similarity searches. , 1985, Science.

[36]  O Cinquin,et al.  Cloning and Expression of Malarial Pyrimidine Enzymes , 2004, Nucleosides, nucleotides & nucleic acids.

[37]  Zhiyong Zhou,et al.  Enhanced expression of a recombinant malaria candidate vaccine in Escherichia coli by codon optimization. , 2004, Protein expression and purification.

[38]  J. Baird,et al.  Effectiveness of antimalarial drugs. , 2005, The New England journal of medicine.

[39]  Christian J Stoeckert,et al.  Plasmodium research in the postgenomic era. , 2006, Trends in parasitology.

[40]  International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome , 2004 .

[41]  J. Skolnick,et al.  The PDB is a covering set of small protein structures. , 2003, Journal of molecular biology.

[42]  Yingyao Zhou,et al.  In vivo transcriptional profiling of Plasmodium falciparum , 2004 .

[43]  Philippa Rhodes,et al.  CryptoDB: a Cryptosporidium bioinformatics resource update , 2005, Nucleic Acids Res..

[44]  Jane Marks,et al.  We Have a Problem , 1992 .

[45]  John Sidney,et al.  Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R. Shields,et al.  MIAME, we have a problem. , 2006, Trends in genetics : TIG.

[47]  John E Hyde,et al.  Quantitative proteomics of the human malaria parasite Plasmodium falciparum and its application to studies of development and inhibition , 2004, Molecular microbiology.

[48]  Leann Tilley,et al.  Identification and Characterization of Heme-interacting Proteins in the Malaria Parasite, Plasmodium falciparum* , 2003, Journal of Biological Chemistry.

[49]  Qijun Chen,et al.  Optimized expression of Plasmodium falciparum erythrocyte membrane protein 1 domains in Escherichia coli , 2004, Malaria Journal.

[50]  Christoph Freiberg,et al.  Functional genomics in antibacterial drug discovery. , 2005, Drug discovery today.

[51]  Fourie Joubert,et al.  Elucidation of sulfadoxine resistance with structural models of the bifunctional Plasmodium falciparum dihydropterin pyrophosphokinase-dihydropteroate synthase. , 2006, Bioorganic & medicinal chemistry.

[52]  D. Sullivan,et al.  Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. , 1997, Annual review of microbiology.

[53]  Thomas Rattei,et al.  SIMAP: the similarity matrix of proteins , 2006, Nucleic Acids Res..

[54]  D. Roos,et al.  The apicoplast as a potential therapeutic target in Toxoplasma and other apicomplexan parasites: some additional thoughts. , 1999, Parasitology today.

[55]  F. Jørgensen,et al.  Towards an understanding of drug resistance in malaria: three-dimensional structure of Plasmodium falciparum dihydrofolate reductase by homology building. , 1999, Bioorganic & medicinal chemistry.

[56]  J. Omumbo,et al.  Web-based climate information resources for malaria control in Africa , 2006, Malaria Journal.

[57]  S. Ward,et al.  Towards a proteomic definition of CoArtem action in Plasmodium falciparum malaria , 2005, Proteomics.

[58]  S. Hoffman,et al.  Funding for malaria genome sequencing , 1997, Nature.

[59]  D. Soldati,et al.  The Apicoplast as a Potential Therapeutic Target in Toxoplasma and Other Apicomplexan Parasites , 1999 .

[60]  Eric Maréchal,et al.  Structure, function and biogenesis of the secondary plastid of apicomplexan parasites. , 2007 .

[61]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[62]  Fourie Joubert,et al.  Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions. , 2004, The Biochemical journal.

[63]  Christoph Freiberg,et al.  The impact of transcriptome and proteome analyses on antibiotic drug discovery. , 2004, Current opinion in microbiology.

[64]  Robert Petryszak,et al.  The predictive power of the CluSTr database , 2005, Bioinform..

[65]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[66]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[67]  Eric Legrand,et al.  Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6 , 2005, The Lancet.

[68]  T. Sittler,et al.  The Plasmodium protein network diverges from those of other eukaryotes , 2005, Nature.

[69]  S. Karlin,et al.  Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Didier Rognan,et al.  sc-PDB: an Annotated Database of Druggable Binding Sites from the Protein Data Bank , 2006, J. Chem. Inf. Model..

[71]  Neil Hall,et al.  Thre Genome of Plasmodium falciparum , 2004 .

[72]  G. Killeen,et al.  Integrated programme is key to malaria control , 2002, Nature.

[73]  Neil Hall,et al.  The genome of model malaria parasites, and comparative genomics. , 2005, Current issues in molecular biology.

[74]  J. Retief,et al.  Phylogenetic analysis using PHYLIP. , 2000, Methods in molecular biology.

[75]  Dennis E. Kyle,et al.  New Class of Small Nonpeptidyl Compounds BlocksPlasmodium falciparum Development In Vitro by Inhibiting Plasmepsins , 2001, Antimicrobial Agents and Chemotherapy.

[76]  C. Ockenhouse,et al.  Effect of Codon Optimization on Expression Levels of a Functionally Folded Malaria Vaccine Candidate in Prokaryotic and Eukaryotic Expression Systems , 2003, Infection and Immunity.

[77]  Manuel Llinás,et al.  Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains , 2006, Nucleic acids research.

[78]  J R Yates,et al.  Utilization of genomic sequence information to develop malaria vaccines , 2003, Journal of Experimental Biology.

[79]  Jean-Paul Comet,et al.  Sequence Alignment: An Approximation Law for the Z-value with Applications to Databank Scanning , 2001, Comput. Chem..

[80]  Sanyam Jain,et al.  "Plasmo2D": an ancillary proteomic tool to aid identification of proteins from Plasmodium falciparum. , 2005, Journal of proteome research.

[81]  G Bernardi,et al.  Compositional properties of nuclear genes from Plasmodium falciparum. , 1995, Gene.

[82]  Z. Szallasi,et al.  Reliability and reproducibility issues in DNA microarray measurements. , 2006, Trends in genetics : TIG.

[83]  R S Desowitz,et al.  Malaria: from quinine to the vaccine. , 1992, Hospital practice.

[84]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[85]  J. D. Figueroa-Villar,et al.  Homology modeling of wild type and pyrimethamine/cycloguanil-cross resistant mutant type Plasmodium falciparum dihydrofolate reductase. A model for antimalarial chemotherapy resistance. , 2001, Biophysical chemistry.

[86]  Peng Liu,et al.  Inhibitor binding to the plasmepsin IV aspartic protease from Plasmodium falciparum. , 2006, Biochemistry.

[87]  Michael A. Langston,et al.  Extracting Gene Networks for Low-Dose Radiation Using Graph Theoretical Algorithms , 2006, PLoS Comput. Biol..

[88]  Josie Arnold,et al.  The virtual laboratory , 1996 .

[89]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[90]  Olivier Bastien,et al.  Fundamentals of massive automatic pairwise alignments of protein sequences: theoretical significance of Z-value statistics , 2004, Bioinform..

[91]  J. Schug,et al.  The Plasmodium genome database , 2002, Nature.

[92]  Christian J Stoeckert,et al.  Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. , 2006, Genome research.

[93]  D. Soldati,et al.  The apicoplast as a potential therapeutic target in and other apicomplexan parasites. , 1999, Parasitology today.

[94]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[95]  Robert Kanigel,et al.  The genome project. , 1987, The New York times magazine.

[96]  Thomas Rattei,et al.  SIMAP - The similarity matrix of proteins , 2005, ECCB/JBI.

[97]  Gene Ontology Consortium,et al.  The Gene Ontology (GO) project in 2006 , 2005, Nucleic Acids Res..

[98]  David Abramson,et al.  Application of grid computing to parameter sweeps and optimizations in molecular modeling , 2005, Future Gener. Comput. Syst..

[99]  R. Nadon,et al.  Inferential literacy for experimental high-throughput biology. , 2006, Trends in genetics : TIG.

[100]  Timothy A J Haystead,et al.  Discovery of novel targets of quinoline drugs in the human purine binding proteome. , 2002, Molecular pharmacology.

[101]  David J. Garcia Aristegui,et al.  GROCK: high-throughput docking using LCG grid tools , 2005, The 6th IEEE/ACM International Workshop on Grid Computing, 2005..

[102]  L. Sibley,et al.  Comparative genomic and phylogenetic analyses of calcium ATPases and calcium-regulated proteins in the apicomplexa. , 2006, Molecular biology and evolution.

[103]  Yingyao Zhou,et al.  The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. , 2005, Molecular and biochemical parasitology.

[104]  H. Lichtenthaler,et al.  Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. , 1999, Science.

[105]  T. Speed,et al.  GOstat: find statistically overrepresented Gene Ontologies within a group of genes. , 2004, Bioinformatics.

[106]  W. Wasserman,et al.  GeneLynx: a gene-centric portal to the human genome. , 2001, Genome research.

[107]  Joaquín Dopazo,et al.  FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes , 2004, Bioinform..

[108]  Martin Vingron,et al.  Large scale hierarchical clustering of protein sequences , 2005, BMC Bioinformatics.

[109]  Jessica C Kissinger,et al.  Mining the Plasmodium genome database to define organellar function: what does the apicoplast do? , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[110]  Yves Gibon,et al.  Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes , 2006, Genome Biology.

[111]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[112]  Jiri Gut,et al.  Identification of novel parasitic cysteine protease inhibitors by use of virtual screening. 2. The available chemical directory. , 2006, Journal of medicinal chemistry.

[113]  R. Altman,et al.  Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. , 2004, Genome research.

[114]  D. Koller,et al.  GeneXPress : A Visualization and Statistical Analysis Tool for Gene Expression and Sequence Data , .

[115]  T. Nchinda,et al.  Malaria: a reemerging disease in Africa. , 1998, Emerging infectious diseases.

[116]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[117]  Steven C. Lawlor,et al.  MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data , 2003, Genome Biology.

[118]  H. Ginsburg Progress in in silico functional genomics: the malaria Metabolic Pathways database. , 2006, Trends in parasitology.

[119]  C. Fletcher The Plasmodium falciparum Genome Project. , 1998, Parasitology today.

[120]  B. Fertil,et al.  Analysis of the compositional biases in Plasmodium falciparum genome and proteome using Arabidopsis thaliana as a reference. , 2004, Gene.

[121]  Narelle Towie,et al.  Malaria breakthrough raises spectre of drug resistance , 2006, Nature.

[122]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[123]  R E Cachau,et al.  Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[124]  R. Ridley,et al.  Malaria: Dissecting chloroquine resistance , 1998, Current Biology.

[125]  Jonathan Schug,et al.  Drug‐induced alterations in gene expression of the asexual blood forms of Plasmodium falciparum , 2003, Molecular microbiology.

[126]  D. Carucci,et al.  Advances in malaria genomics since MIM Arusha, 2002. , 2005, Acta tropica.

[127]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[128]  Michael A. Langston,et al.  Innovative computational methods for transcriptomic data analysis , 2006, SAC.

[129]  M. Gardner,et al.  The genome of the malaria parasite. , 1999, Current opinion in genetics & development.

[130]  P. Keeling,et al.  Recycled plastids: a 'green movement' in eukaryotic evolution. , 2002, Trends in genetics : TIG.

[131]  Elisabetta Pizzi,et al.  Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. , 2005, Molecular and biochemical parasitology.

[132]  Stéphane Vialette,et al.  MiCoViTo: a tool for gene-centric comparison and visualization of yeast transcriptome states , 2004, BMC Bioinformatics.

[133]  G. V. Paolini,et al.  Global mapping of pharmacological space , 2006, Nature Biotechnology.

[134]  D. Goldberg,et al.  Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. , 2001, Trends in parasitology.

[135]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[136]  A. Waters,et al.  Malaria: New Vaccines for Old? , 2006, Cell.

[137]  M. Fraunholz,et al.  Systems biology in malaria research. , 2005, Trends in parasitology.

[138]  May D. Wang,et al.  GoMiner: a resource for biological interpretation of genomic and proteomic data , 2003, Genome Biology.

[139]  Burkhard Rost,et al.  Domains, motifs and clusters in the protein universe. , 2003, Current opinion in chemical biology.

[140]  Manuel Llinás,et al.  Mining the malaria transcriptome. , 2005, Trends in parasitology.

[141]  S. Adl,et al.  The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.

[142]  C. Janse,et al.  Plasmodium post-genomics: better the bug you know? , 2006, Nature Reviews Microbiology.

[143]  Yongyuth Yuthavong,et al.  Insights into antifolate resistance from malarial DHFR-TS structures , 2003, Nature Structural Biology.

[144]  J. D. Elliott,et al.  Drug discovery in the next millennium. , 2000, Annual review of pharmacology and toxicology.

[145]  David S Roos,et al.  Protozoan genomics for drug discovery , 2005, Nature Biotechnology.

[146]  Li Li,et al.  PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data , 2003, Nucleic Acids Res..

[147]  M Read,et al.  Rational drug design approach for overcoming drug resistance: application to pyrimethamine resistance in malaria. , 1998, Journal of medicinal chemistry.

[148]  David R Westhead,et al.  Annotating the Plasmodium genome and the enigma of the shikimate pathway. , 2004, Trends in parasitology.

[149]  Jiri Gut,et al.  Identification of novel parasitic cysteine protease inhibitors using virtual screening. 1. The ChemBridge database. , 2004, Journal of medicinal chemistry.

[150]  E. Maréchal,et al.  The apicoplast: a new member of the plastid family. , 2001, Trends in plant science.

[151]  Y Thebtaranonth,et al.  Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: structural basis of antifolate resistance. , 2000, Bioorganic & medicinal chemistry.

[152]  Young‐Tae Chang,et al.  Tools for target identification and validation. , 2004, Current opinion in chemical biology.

[153]  Karine Prat,et al.  Prediction of the general transcription factors associated with RNA polymerase II in Plasmodium falciparum: conserved features and differences relative to other eukaryotes , 2005, BMC Genomics.

[154]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[155]  M. Vignali,et al.  A protein interaction network of the malaria parasite Plasmodium falciparum , 2005, Nature.

[156]  W. Graham Richards,et al.  Virtual screening using grid computing: the screensaver project , 2002, Nature Reviews Drug Discovery.

[157]  A. C. Alves,et al.  Malaria Parasites Can Develop Stable Resistance to Artemisinin but Lack Mutations in Candidate Genes atp6 (Encoding the Sarcoplasmic and Endoplasmic Reticulum Ca2+ ATPase), tctp, mdr1, and cg10 , 2006, Antimicrobial Agents and Chemotherapy.

[158]  Marco Punta,et al.  Beyond annotation transfer by homology: novel protein-function prediction methods to assist drug discovery. , 2005, Drug discovery today.

[159]  Kamel Jabbari,et al.  Synonymous Codon Choices in the Extremely GC-Poor Genome of Plasmodium falciparum: Compositional Constraints and Translational Selection , 1999, Journal of Molecular Evolution.

[160]  M. Grainger,et al.  PCR-based gene synthesis as an efficient approach for expression of the A+T-rich malaria genome. , 1999, Protein engineering.

[161]  David Abramson,et al.  The Virtual Laboratory: a toolset to enable distributed molecular modelling for drug design on the World‐Wide Grid , 2003, Concurr. Comput. Pract. Exp..

[162]  Kaisheng Chen,et al.  In silico gene function prediction using ontology-based pattern identification , 2005, Bioinform..

[163]  Weltgesundheitsorganisation World malaria report , 2005 .

[164]  David S. Roos,et al.  Themes and Variations in Apicomplexan Parasite Biology , 2005, Science.

[165]  Philippe Ortet,et al.  The configuration space of homologous proteins: A theoretical and practical framework to reduce the diversity of the protein sequence space after massive all-by-all sequence comparisons , 2007, Future Gener. Comput. Syst..

[166]  Andrew Hayes,et al.  Integrative investigation of metabolic and transcriptomic data , 2006, BMC Bioinformatics.

[167]  Fourie Joubert,et al.  Novel properties of malarial S-adenosylmethionine decarboxylase as revealed by structural modelling. , 2006, Journal of molecular graphics & modelling.

[168]  P. Hajduk,et al.  Predicting protein druggability. , 2005, Drug discovery today.

[169]  T. Horii,et al.  Production of recombinant SERA proteins of Plasmodium falciparum in Escherichia coli by using synthetic genes. , 1996, Vaccine.

[170]  Peter D. Karp,et al.  MetaCyc: a multiorganism database of metabolic pathways and enzymes , 2005, Nucleic Acids Res..

[171]  T. Cavalier-smith,et al.  Kingdom protozoa and its 18 phyla. , 1993, Microbiological reviews.

[172]  Ian Foster,et al.  Grid technologies empowering drug discovery. , 2002, Drug discovery today.

[173]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.

[174]  Feng Chen,et al.  OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups , 2005, Nucleic Acids Res..

[175]  Yufeng Wang,et al.  Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. , 2003, Genome research.

[176]  R. Coppel,et al.  Bioinformatics and the malaria genome: facilitating access and exploitation of sequence information. , 2001, Molecular and biochemical parasitology.

[177]  Yingyao Zhou,et al.  In vivo transcriptome of Plasmodium falciparum reveals overexpression of transcripts that encode surface proteins. , 2005, The Journal of infectious diseases.

[178]  Yingyao Zhou,et al.  Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. , 2004, Genome research.

[179]  S. Salzberg,et al.  Interpolated Markov models for eukaryotic gene finding. , 1999, Genomics.

[180]  Peter C. Baldwin,et al.  How Night Air Became Good Air, 1776–1930 , 2003, Environmental History.

[181]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[182]  Cristina Aurrecoechea,et al.  PlasmoDB v5: new looks, new genomes. , 2006, Trends in parasitology.