Genome duplication, divergent resolution and speciation.

What are the evolutionary consequences of gene duplication? One answer is speciation, according to a model initially called Reciprocal Silencing and recently expanded and renamed Divergent Resolution. This model shows how the loss of different copies of a duplicated gene in allopatric populations (divergent resolution) can promote speciation by genetically isolating these populations should they become reunited. Genome duplication events produce thousands of duplicated genes. Therefore, lineages with a history of genome duplication might have been especially prone to speciation via divergent resolution.

[1]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[2]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[3]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[4]  A. Meyer,et al.  Vertebrate genomics: More fishy tales about Hox genes , 1999, Current Biology.

[5]  R. Krumlauf,et al.  Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head , 2000, Nature.

[6]  R Abagyan,et al.  A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. , 1999, Genome research.

[7]  L. Silver,et al.  Phylogenetic analysis of T-Box genes demonstrates the importance of amphioxus for understanding evolution of the vertebrate genome. , 2000, Genetics.

[8]  S. Portnoy,et al.  The roles of speciation and divergence time in the loss of duplicate gene expression , 1979 .

[9]  G. Bailey,et al.  Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Austin L. Hughes,et al.  Phylogenies of Developmentally Important Proteins Do Not Support the Hypothesis of Two Rounds of Genome Duplication Early in Vertebrate History , 1999, Journal of Molecular Evolution.

[11]  A. Meyer,et al.  Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. , 1999, Current opinion in cell biology.

[12]  Y. Yan,et al.  A comparative map of the zebrafish genome. , 2000, Genome research.

[13]  W. Li,et al.  Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes. , 1980, Genetics.

[14]  L. Lundin,et al.  Gene duplications in early metazoan evolution. , 1999, Seminars in cell & developmental biology.

[15]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[16]  P. Holland The effect of gene duplication on homology. , 1999, Novartis Foundation symposium.

[17]  P. Zipperlen,et al.  Functional genomic analysis of C. elegans chromosome I by systematic RNA interference , 2000, Nature.

[18]  V. Prince,et al.  Beyond the Hox complex , 2000, Genome Biology.

[19]  A. Sidow Gen(om)e duplications in the evolution of early vertebrates. , 1996, Current opinion in genetics & development.

[20]  Poethig Rs,et al.  Life with 25,000 genes. , 2001 .

[21]  Liangbiao Chen,et al.  Evolution of an antifreeze glycoprotein , 1999, Nature.

[22]  A. Hughes,et al.  Gene duplication and the structure of eukaryotic genomes. , 2001, Genome research.

[23]  Sebastian A. Leidel,et al.  Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III , 2000, Nature.

[24]  Michael Lynch,et al.  The Origin of Interspecific Genomic Incompatibility via Gene Duplication , 2000, The American Naturalist.

[25]  Yuji Kohara,et al.  Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi , 2001, Current Biology.

[26]  J. S. Nelson,et al.  Fishes of the world. , 1978 .

[27]  Y Van de Peer,et al.  Comparative genomics provides evidence for an ancient genome duplication event in fish. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  Andrew P. Martin Increasing Genomic Complexity by Gene Duplication and the Origin of Vertebrates , 1999, The American Naturalist.

[29]  R S Poethig Life with 25,000 genes. , 2001, Genome research.

[30]  F. Allendorf Protein polymorphism and the rate of loss of duplicate gene expression , 1978, Nature.

[31]  S. C. Barber,et al.  Loss of duplicate gene expression in tetraploid Chenopodium , 1983 .

[32]  S. Hartley THE CHROMOSOMES OF SALMONID FISHES , 1987 .

[33]  X. Gu,et al.  Evolutionary Patterns of Gene Families Generated in the Early Stage of Vertebrates , 2000, Journal of Molecular Evolution.

[34]  S. Tanksley,et al.  Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Y. Yan,et al.  Zebrafish comparative genomics and the origins of vertebrate chromosomes. , 2000, Genome research.

[36]  J. Mollon,et al.  The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. , 1999, Genome research.

[37]  M. Windham,et al.  A Model for Divergent, Allopatric Speciation of Polyploid Pteridophytes Resulting from Silencing of Duplicate-Gene Expression , 1991, The American Naturalist.

[38]  F. Allendorf,et al.  Silencing of duplicate genes: a null allele polymorphism for lactate dehydrogenase in brown trout (Salmo trutta). , 1984, Molecular biology and evolution.

[39]  S. Mango,et al.  A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. , 2000, Science.

[40]  D. Soltis,et al.  Electrophoretic Evidence for Allopolyploidy in the Fern Polypodium virginianum , 1987 .

[41]  M. Nei,et al.  Gene Duplication and Nucleotide Substitution in Evolution , 1969, Nature.

[42]  C. Mello,et al.  RNAi in C. elegans: Soaking in the Genome Sequence , 1998, Science.

[43]  B. May,et al.  Biochemical Genetic Variation in Pink and Chum Salmon: Inheritance of intraspecies variation and apparent absence of interspecies introgression following massive hybridization of hatchery stocks , 1975 .

[44]  X. Gu,et al.  Evolutionary Patterns of Gene Families Generated in the Early Stage of Vertebrates , 2001, Journal of Molecular Evolution.

[45]  M. Kondo,et al.  A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. , 2000, Genetics.

[46]  S. Guttman,et al.  Recurring Origins of Allopolyploid Species in Asplenium , 1985, Science.

[47]  Joachim Wittbrodt,et al.  More genes in fish , 1998 .