Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations

In recent years we have learned to fabricate structures smaller than electromagnetic wavelengths, and to assemble them into metamaterials with exotic optical properties for previously unimaginable applications. One such property is perfect absorption of incident light, with no reflection or transmission, across many wavelengths. The authors review the physics, design principles, and classification of thin perfect absorbers, and outline avenues for progress.

[1]  Constantin R. Simovski,et al.  Electromagnetic characterization of substrated metasurfaces , 2011 .

[2]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[3]  S. Tretyakov,et al.  Synthesis of Polarization Transformers , 2013, IEEE Transactions on Antennas and Propagation.

[4]  Bing Wang,et al.  Ultrathin multi-band planar metamaterial absorber based on standing wave resonances. , 2012, Optics express.

[5]  S. Tretyakov,et al.  Eliminating Electromagnetic Scattering From Small Particles , 2012, IEEE Transactions on Antennas and Propagation.

[6]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[7]  Ahmad Hoorfar,et al.  Thin absorbers using space‐filling curve artificial magnetic conductors , 2009 .

[8]  D. Miller,et al.  On perfect cloaking. , 2006, Optics express.

[9]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[10]  S. A. Tretyakov,et al.  Total Absorption of Electromagnetic Waves in Ultimately Thin Layers , 2012, IEEE Transactions on Antennas and Propagation.

[11]  V. Bulović,et al.  Solid state cavity QED: Strong coupling in organic thin films , 2007 .

[12]  Vladimir Bulović,et al.  Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. , 2006, Optics letters.

[13]  Constantin R. Simovski,et al.  Array of C-shaped wire elements for the reduction of reflection from a conducting plane , 2000 .

[14]  Vincent Fusco,et al.  Loading artificial magnetic conductor and artificial magnetic conductor absorber with negative impedance convertor elements , 2012 .

[15]  Sergei A. Tretyakov,et al.  Influence of Chiral Shapes of Individual Inclusions on the Absorption in Chiral Composite Coatings , 1996 .

[16]  Jim Euchner Design , 2014, Catalysis from A to Z.

[17]  D. Lippens,et al.  Ferroelectrics based absorbing layers , 2014 .

[18]  M. Albooyeh,et al.  Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state , 2012, 1201.5800.

[19]  Gamani Karunasiri,et al.  Bi-material terahertz sensors using metamaterial structures. , 2013, Optics express.

[20]  Liang-yao Chen,et al.  Multi-band metamaterial absorber based on the arrangement of donut-type resonators. , 2013, Optics express.

[21]  Ji Zhou,et al.  An extremely broad band metamaterial absorber based on destructive interference. , 2011, Optics express.

[22]  Tie Jun Cui,et al.  Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation , 2012 .

[23]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[24]  K. Rozanov Ultimate thickness to bandwidth ratio of radar absorbers , 2000 .

[25]  Yoshinobu Okano,et al.  Development of Optically Transparent Ultrathin Microwave Absorber for Ultrahigh-Frequency RF Identification System , 2012, IEEE Transactions on Microwave Theory and Techniques.

[26]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[27]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[28]  F. Costa,et al.  A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers , 2013, IEEE Transactions on Antennas and Propagation.

[29]  Harald Giessen,et al.  Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. , 2011, Nano letters.

[30]  G. Lozano,et al.  Coherent and broadband enhanced optical absorption in graphene. , 2013, ACS nano.

[31]  John P. Barrett,et al.  A broadband low-reflection metamaterial absorber , 2010 .

[32]  Yongzhi Cheng,et al.  A planar polarization-insensitive metamaterial absorber , 2011 .

[33]  R. Fante,et al.  Reflection properties of the Salisbury screen , 1988 .

[34]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[35]  Federico Capasso,et al.  Nanometre optical coatings based on strong interference effects in highly absorbing media. , 2013, Nature materials.

[36]  Anders Karlsson,et al.  On the Absorption Mechanism of Ultra Thin Absorbers , 2010, IEEE Transactions on Antennas and Propagation.

[37]  T. G. Kharina,et al.  The perfectly matched layer as a synthetic material with active inclusions , 2000 .

[38]  M. Wegener,et al.  Metamaterial metal-based bolometers , 2012, 1204.0966.

[39]  V. Fusco,et al.  Thin Radar Absorber Using an Artificial Magnetic Ground Plane , 2005, 2006 European Microwave Conference.

[40]  Shuangchun Wen,et al.  Critical coupling with graphene-based hyperbolic metamaterials , 2014, Scientific Reports.

[41]  Shanhui Fan,et al.  Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. , 2009, Optics express.

[42]  Harald Giessen,et al.  Plasmon Hybridization in Stacked Cut‐Wire Metamaterials , 2007 .

[43]  Y. P. Lee,et al.  THz-metamaterial absorbers , 2013 .

[44]  D. Pozar Scattered and absorbed powers in receiving antennas , 2004 .

[45]  Yong-jiang Zhou,et al.  Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers , 2011 .

[46]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[47]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[48]  Qi-Ye Wen,et al.  Transmission line model and fields analysis of metamaterial absorber in the terahertz band. , 2009, Optics express.

[49]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[50]  Z. W. Li,et al.  Recent progress in some composite materials and structures for specific electromagnetic applications , 2013 .

[51]  Junjie Li,et al.  A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime , 2012 .

[52]  V. Zaporojtchenko,et al.  Nanostructured magnetic Fe–Ni–Co/Teflon multilayers for high-frequency applications in the gigahertz range , 2006 .

[53]  Sergei A. Tretyakov,et al.  Resonance Properties of Bi-Helix Media at Microwaves , 1997 .

[54]  Tian Jiang,et al.  Polarization Insensitive Metamaterial Absorber with Wide Incident Angle , 2010 .

[55]  F. Lederer,et al.  A perfect absorber made of a graphene micro-ribbon metamaterial. , 2012, Optics express.

[56]  L. B. Lok,et al.  Polarization insensitive terahertz metamaterial absorber. , 2011, Optics letters.

[57]  C. Simovski,et al.  Huge local field enhancement in perfect plasmonic absorbers. , 2012, Optics express.

[58]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[59]  Stefano Longhi,et al.  PT-symmetric laser absorber , 2010, 1008.5298.

[60]  F Bilotti,et al.  Design of Miniaturized Narrowband Absorbers Based on Resonant-Magnetic Inclusions , 2011, IEEE Transactions on Electromagnetic Compatibility.

[61]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[62]  Franz Faupel,et al.  Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials , 2011, Advanced materials.

[63]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[64]  O. Acher Copper vs. iron: Microwave magnetism in the metamaterial age , 2009 .

[65]  Willie J Padilla,et al.  Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging , 2008, 0807.3390.

[66]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[67]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[68]  Hui Cao,et al.  Coherent perfect absorbers: Time-reversed lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[69]  S. Tretyakov,et al.  Omega Transmission Lines with Applications to Effective Medium Models of Metamaterials , 2014, 1401.8211.

[70]  S. Qu,et al.  A Polarization-Independent Wide-Angle Dual Directional Absorption Metamaterial Absorber , 2012 .

[71]  George V. Eleftheriades,et al.  Experimental Demonstration of Active Electromagnetic Cloaking , 2013 .

[72]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[73]  Xiong Li,et al.  Introducing dipole-like resonance into magnetic resonance to realize simultaneous drop in transmission and reflection at terahertz frequency , 2010 .

[74]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[75]  S. A. Schelkunoff,et al.  The electromagnetic theory of coaxial transmission lines and cylindrical shields , 1934 .

[76]  Subimal Deb,et al.  Critical coupling at oblique incidence , 2007 .

[77]  M. Brongersma,et al.  Omnidirectional Near-Unity Absorption in an Ultrathin Planar Semiconductor Layer on a Metal Substrate , 2014 .

[78]  Igor S. Nefedov,et al.  Total absorption in asymmetric hyperbolic media , 2013, Scientific Reports.

[79]  Filiberto Bilotti,et al.  An SRR based microwave absorber , 2006 .

[80]  A. Fernandez,et al.  General solution for single-layer electromagnetic-wave absorber , 1985 .

[81]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[82]  M. P. Hokmabadi,et al.  Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model. , 2013, Optics express.

[83]  Y. P. Lee,et al.  Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance. , 2012, Optics express.

[84]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[85]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[86]  G. Guo,et al.  Coherent perfect nanoabsorbers based on negative refraction. , 2012, Optics express.

[87]  Sergei A. Tretyakov Uniaxial Omega Medium as a Physically Realizable Alternative for the Perfectly Matched Layer (Pml) , 1998 .

[88]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[89]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[90]  S. Longhi Coherent perfect absorption in a homogeneously broadened two-level medium , 2011, 1111.3463.

[91]  S. Ramakrishna,et al.  Design of highly absorbing metamaterials for infrared frequencies. , 2012, Optics express.

[92]  Gérard Berginc,et al.  A Broadband Dielectric Microwave Absorber With Periodic Metallizations , 1999 .

[93]  C. Simovski,et al.  An Explicit Method for Calculating the Reflection From an Anti-Reflection Structure Involving Array of C-Shaped Wire Elements , 2000 .

[94]  J. O’Hara,et al.  Antireflection coating using metamaterials and identification of its mechanism. , 2010, Physical review letters.

[95]  S. Tretyakov,et al.  Symmetric Absorbers Realized as Gratings of PEC Cylinders Covered by Ordinary Dielectrics , 2014, IEEE Transactions on Antennas and Propagation.

[96]  S. Tretyakov,et al.  DYNAMIC MODEL OF ARTIFICIAL REACTIVE IMPEDANCE SURFACES , 2003 .

[97]  Carl Hägglund,et al.  Plasmonic Near-Field Absorbers for Ultrathin Solar Cells. , 2012, The journal of physical chemistry letters.

[98]  F. Costa,et al.  On the Bandwidth of High-Impedance Frequency Selective Surfaces , 2009, IEEE Antennas and Wireless Propagation Letters.

[99]  A. Priou,et al.  Advances in complex electromagnetic materials , 1997 .

[100]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics express.

[101]  S. Tretyakov,et al.  On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas , 2006, IEEE Transactions on Antennas and Propagation.

[102]  Sergei A. Tretyakov,et al.  Thin absorbing structure for all incidence angles based on the use of a high‐impedance surface , 2003 .

[103]  Sanjay Krishna,et al.  A multispectral and polarization-selective surface-plasmon resonant midinfrared detector , 2009, 0907.2945.

[104]  R. Carminati,et al.  Near-field thermophotovoltaic energy conversion , 2006 .

[105]  Willie J. Padilla,et al.  Perfect electromagnetic absorbers from microwave to optical , 2010 .

[106]  Mats Gustafsson,et al.  Physical limitations on metamaterials: restrictions on scattering and absorption over a frequency interval , 2007 .

[107]  Houtong Chen,et al.  The role of magnetic dipoles and non-zero-order Bragg waves in metamaterial perfect absorbers. , 2012, Optics express.

[108]  S. D. Gupta Strong-interaction-mediated critical coupling at two distinct frequencies. , 2007, Optics letters.

[109]  V. V. Samsonova,et al.  Microwave and static magnetic properties of multi-layered iron-based films , 2009 .

[110]  Sailing He,et al.  Arbitrarily thin metamaterial structure for perfect absorption and giant magnification. , 2011, Optics express.

[111]  Haifeng Cheng,et al.  Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach , 2013 .

[112]  Bo O. Zhu,et al.  Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. , 2014, Optics express.

[113]  Min Qiu,et al.  Light absorber based on nano-spheres on a substrate reflector. , 2013, Optics express.

[114]  Changtao Wang,et al.  Design principles for infrared wide-angle perfect absorber based on plasmonic structure. , 2011, Optics express.

[115]  Douglas H. Werner,et al.  Reconfigurable and Tunable Metamaterials: A Review of the Theory and Applications , 2014 .

[116]  Yidong Chong,et al.  Time-Reversed Lasing and Interferometric Control of Absorption , 2011, Science.

[117]  Thomas Maier,et al.  Wavelength-tunable microbolometers with metamaterial absorbers. , 2009, Optics letters.

[118]  F. Costa,et al.  A Thin Electromagnetic Absorber for Wide Incidence Angles and Both Polarizations , 2008, IEEE Transactions on Antennas and Propagation.

[119]  V. Popov,et al.  Total light absorption in plasmonic nanostructures , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[120]  C. Simovski,et al.  Substrate-induced bianisotropy in plasmonic grids , 2011 .

[121]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[122]  Abul K. Azad,et al.  Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers , 2010 .

[123]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[124]  S. Tretyakov,et al.  Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches , 2007, IEEE Transactions on Antennas and Propagation.