Lattice Strain Relaxation and Compositional Control in As-Rich GaAsP/(100)GaAs Heterostructures Grown by MOVPE

The fabrication of high-efficiency GaAsP-based solar cells on GaAs wafers requires addressing structural issues arising from the materials lattice mismatch. We report on tensile strain relaxation and composition control of MOVPE-grown As-rich GaAs1−xPx/(100)GaAs heterostructures studied by double-crystal X-ray diffraction and field emission scanning electron microscopy. Thin (80–150 nm) GaAs1−xPx epilayers appear partially relaxed (within 1−12% of the initial misfit) through a network of misfit dislocations along the sample [011] and [011−] in plane directions. Values of the residual lattice strain as a function of epilayer thickness were compared with predictions from the equilibrium (Matthews–Blakeslee) and energy balance models. It is shown that the epilayers relax at a slower rate than expected based on the equilibrium model, an effect ascribed to the existence of an energy barrier to the nucleation of new dislocations. The study of GaAs1−xPx composition as a function of the V-group precursors ratio in the vapor during growth allowed for the determination of the As/P anion segregation coefficient. The latter agrees with values reported in the literature for P-rich alloys grown using the same precursor combination. P-incorporation into nearly pseudomorphic heterostructures turns out to be kinetically activated, with an activation energy EA = 1.41 ± 0.04 eV over the entire alloy compositional range.

[1]  P. Prete,et al.  GaAs hetero-epitaxial layers grown by MOVPE on exactly-oriented and off-cut (111)Si: lattice tilt, mosaicity and defects content , 2023, Applied Surface Science.

[2]  Hailiang Dong,et al.  Reduction of nonradiative recombination for high-power 808 nm laser diode adopting InGaAsP/InGaAsP/GaAsP active region , 2023, Optics Communications.

[3]  In‐Hwan Lee,et al.  GaAs/Si Tandem Solar Cells with an Optically Transparent InAlAs/GaAs Strained Layer Superlattices Dislocation Filter Layer , 2023, Energies.

[4]  M. Lomascolo,et al.  Enhanced Optical Absorption of GaAs Near-Band-Edge Transitions in GaAs/AlGaAs Core–Shell Nanowires: Implications for Nanowire Solar Cells , 2022, ACS Applied Nano Materials.

[5]  A. Fukuyama,et al.  Photothermal investigation for optimizing a lattice strain relaxation condition of InGaAs/GaAsP superlattice photovoltaic structures from a nonradiative transition point of view , 2022, Journal of Physics D: Applied Physics.

[6]  J. Harmand,et al.  GaAs/GaInP nanowire solar cell on Si with state-of-the-art Voc and quasi-Fermi level splitting. , 2022, Nanoscale.

[7]  F. Dimroth,et al.  Two‐terminal III–V//Si triple‐junction solar cell with power conversion efficiency of 35.9 % at AM1.5g , 2021, Progress in Photovoltaics: Research and Applications.

[8]  Riley C. Whitehead,et al.  Optimization of four terminal rear heterojunction GaAs on Si interdigitated back contact tandem solar cells , 2021 .

[9]  P. Prete,et al.  Dilute nitride III-V nanowires for high-efficiency intermediate-band photovoltaic cells: Materials requirements, self-assembly methods and properties , 2020 .

[10]  O. Supplie,et al.  Metalorganic vapor phase epitaxy of III–V-on-silicon: Experiment and theory , 2018, Progress in Crystal Growth and Characterization of Materials.

[11]  R. Hübner,et al.  Three-Dimensional Composition and Electric Potential Mapping of III–V Core–Multishell Nanowires by Correlative STEM and Holographic Tomography , 2018, Nano letters.

[12]  Kelsey A. W. Horowitz,et al.  Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions , 2017, Nature Energy.

[13]  Zhengshan J. Yu,et al.  15.3%-Efficient GaAsP Solar Cells on GaP/Si Templates , 2017 .

[14]  V. Dubrovskii,et al.  CdTe Nanowires by Au-Catalyzed Metalorganic Vapor Phase Epitaxy. , 2017, Nano letters.

[15]  James Ho,et al.  High performance 808 nm GaAsP/InGaP quantum well lasers , 2016, SPIE/COS Photonics Asia.

[16]  M. Lee,et al.  Threading dislocation density characterization in III–V photovoltaic materials by electron channeling contrast imaging , 2016 .

[17]  M. Lee,et al.  GaAsP solar cells on GaP/Si with low threading dislocation density , 2016 .

[18]  Ningfeng Huang,et al.  Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition. , 2015, Nano letters.

[19]  Yoshiaki Nakano,et al.  100‐period, 1.23‐eV bandgap InGaAs/GaAsP quantum wells for high‐efficiency GaAs solar cells: toward current‐matched Ge‐based tandem cells , 2014 .

[20]  M. Graef,et al.  Rapid misfit dislocation characterization in heteroepitaxial III-V/Si thin films by electron channeling contrast imaging , 2014 .

[21]  Leathen Shi,et al.  Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics , 2013, Nature Communications.

[22]  S. Tomasulo,et al.  Metamorphic GaAsP and InGaP Solar Cells on GaAs , 2012, IEEE Journal of Photovoltaics.

[23]  P. Prete,et al.  Synthesis of vertically‐aligned GaAs nanowires on GaAs/(111)Si hetero‐substrates by metalorganic vapour phase epitaxy , 2011 .

[24]  M. Lee,et al.  Metamorphic GaAsP buffers for growth of wide-bandgap InGaP solar cells , 2011 .

[25]  E. Fitzgerald,et al.  Comparison of compressive and tensile relaxed composition-graded GaAsP and (Al)InGaP substrates , 2010 .

[26]  R. Hicks,et al.  Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine , 2004 .

[27]  W. Pompe,et al.  Modeling cross-hatch surface morphology in growing mismatched layers , 2002 .

[28]  Aland K. Chin,et al.  Reliability comparison of GaAlAs/GaAs and aluminum-free high-power laser diodes , 1998, Other Conferences.

[29]  David L. King,et al.  Solar cell efficiency tables (Version 60) , 1997 .

[30]  C. Giannini,et al.  Determination of the lattice strain and chemical composition of semiconductor heterostructures by high-resolution x-ray diffraction , 1996 .

[31]  F. Romanato,et al.  Determination of surface lattice strain in ZnTe epilayers on {100}GaAs by ion channeling and reflectance spectroscopy , 1993 .

[32]  Sadao Adachi,et al.  Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs and InGaAsP , 1992 .

[33]  C. Ferrari,et al.  On the mechanisms of strain release in molecular‐beam‐epitaxy‐grown InxGa1−xAs/GaAs single heterostructures , 1989 .

[34]  C. W. T. Bulle‐Lieuwma,et al.  Generation of misfit dislocations in semiconductors , 1987 .

[35]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[36]  S. Sugou,et al.  Conditions for OMVPE Growth of GaInAsP/InP Crystal , 1984 .

[37]  P. Deus,et al.  Thermal Expansion of GaP within 20 to 300 K , 1983, November 16.

[38]  J. W. Matthews,et al.  Defects in epitaxial multilayers , 1974 .

[39]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[40]  R. Feder,et al.  Precision Thermal Expansion Measurements of Semi‐insulating GaAs , 1968 .

[41]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[42]  K. Catchpole,et al.  Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency , 2014, IEEE Journal of Photovoltaics.

[43]  Natalya V. Yastrebova,et al.  High-efficiency multi-junction solar cells : Current status and future potential , 2008 .

[44]  安達 定雄 Physical properties of III-V semiconductor compounds : InP, InAs, GaAs, GaP, InGaAs, and InGaAsP , 1992 .

[45]  C. Humphreys,et al.  A dynamical theory for the contrast of perfect and imperfect crystals in the scanning electron microscope using backscattered electrons , 1972 .