Traveling-wave semiconductor laser amplifiers for optical communications systems

The state of the art and future possibilities for semiconductor laser amplifiers (SLAs) are reviewed. Design criteria for improving SLA characteristics are clarified from the viewpoint of both material gain parameters and amplifier operating conditions. It is shown that essential amplifier characteristics for communications system applications are high saturation power and a small noise figure, which are achieved by traveling-wave semiconductor laser amplifiers (TWAs). Antireflection (AR) coating, angled facet structures, and window facet structures are discussed to reduce facet reflection for the fabrication of TWAs.<<ETX>>

[1]  Yoshihisa Yamamoto,et al.  Noise and error rate performance of semiconductor laser amplifiers in PCM-IM optical transmission systems , 1980 .

[2]  T. Saitoh,et al.  1.5 µm GaInAsP traveling-wave semiconductor laser amplifier , 1987 .

[3]  N. A. Olsson,et al.  Polarisation-independent configuration optical amplifier , 1988 .

[4]  G. Zeidler,et al.  Use of laser amplifiers in a glass-fibre communications system , 1973 .

[5]  Chung-En Zah,et al.  1.5-µm GaInAsP angled-facet flared-waveguide traveling wave laser amplifiers , 1990 .

[6]  Ian W. Marshall,et al.  Wideband 1.5μm optical receiver using travelling-wave laser amplifier , 1986 .

[7]  M. O'Mahony Semiconductor laser optical amplifiers for use in future fiber systems , 1988 .

[8]  Paul Urquhart,et al.  Review of rare earth doped fibre lasers and amplifiers , 1988 .

[9]  F. G. Storz,et al.  Gain recovery time of traveling‐wave semiconductor optical amplifiers , 1989 .

[10]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[11]  Gregory Raybon,et al.  Travelling-wave optical amplifier at 1.3μm , 1987 .

[12]  Gregory Raybon,et al.  Optical time-division multiplexed transmission at 8 Gbit/s using single laser and semiconductor optical power amplifier , 1989 .

[13]  T. Ikegami,et al.  Reflectivity of mode at facet and oscillation mode in double-heterostructure injection lasers , 1972 .

[14]  Takaaki Mukai,et al.  1.5 μm ingaasp fabry‐perot cavity‐type laser amplifiers , 1987 .

[15]  Ikuo Mito,et al.  1.5 mu m band travelling-wave semiconductor optical amplifiers with window facet structure , 1989 .

[16]  C. Caneau,et al.  1.5 mu m GaInAsP angled-facet flared-waveguide traveling-wave laser amplifiers , 1990, IEEE Photonics Technology Letters.

[17]  T. Mukai,et al.  Structural design for polarization-insensitive travelling-wave semiconductor laser amplifiers , 1989 .

[18]  J. Simon,et al.  GaInAsP semiconductor laser amplifiers for single-mode fiber communications , 1987 .

[19]  C. Vassallo Polarisation-independent antireflection coatings for semiconductor optical amplifiers , 1988 .

[20]  H. G. Weber,et al.  Optical amplifier configurations with low polarisation sensitivity , 1987 .

[21]  P. Doussiere,et al.  Gain, polarisation sensitivity and saturation power of 1.5 μm near-travelling-wave semiconductor laser amplifier , 1987 .

[22]  B. Enning,et al.  Semiconductor laser optical amplifiers for multichannel coherent optical transmission , 1989 .

[23]  Takaaki Mukai,et al.  Chapter 3 Optical Amplification by Semiconductor Lasers , 1985 .

[24]  N. A. Olsson,et al.  Polarisation-independent optical amplifier with buried facets , 1989 .

[25]  W. J. Devlin,et al.  Broadband Operation of InGaAsP-InGaAs GRINSCH MQW Amplifiers with 115mW Saturated Output Power , 1990 .

[26]  N. A. Olsson Heterodyne gain and noise measurement of a 1.5 µm resonant semiconductor laser amplifier , 1986 .

[27]  Lars Thylén,et al.  Single-layer antireflection coating of semiconductor lasers: polarization properties and the influence of the laser structure , 1989 .

[28]  Yuichi Matsushima,et al.  Effect of mirror facets on lasing characteristics of distributed feedback InGaAsP/InP laser diodes at 1.5 µm range , 1984 .

[29]  C. A. Burrus,et al.  Gain measurements of InGaAsP 1.5-μm optical amplifiers , 1985, Topical Meeting on Integrated and Guided-Wave Optics.

[30]  Kyo Inoue,et al.  Gain saturation dependence on signal wavelength in a travelling-wave semiconductor laser amplifier , 1987 .

[31]  L. D. Tzeng,et al.  Ultra-low reflectivity 1.5μm semiconductor laser preamplifier , 1988 .

[32]  Yoshihisa Yamamoto,et al.  Fundamentals of optical amplifiers , 1989 .

[33]  K. E. Stubkjaer,et al.  Temperature-dependent gain and noise of 1.5 mu m laser amplifiers , 1989 .

[34]  N. A. Olsson,et al.  Wavelength dependence of noise figure of a travelling-wave GaInAsP/InP laser amplifier , 1988 .

[35]  P. Doussiere,et al.  Gain and noise characteristics of a 1.5 mu m near-travelling-wave semiconductor laser amplifier , 1989 .

[36]  S. G. Menocal,et al.  1.3 mu m GaInAsP near-travelling-wave laser amplifiers made by combination of angled facets and antireflection coatings , 1988 .

[37]  G. Eisenstein Theoretical design of single-layer antireflection coatings on laser facets , 1984, AT&T Bell Laboratories Technical Journal.

[38]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[39]  Andrew D. Ellis,et al.  Polarisation-insensitive, near-travelling-wave semiconductor laser amplifiers at 1.5 mu m , 1989 .

[40]  Takaaki Mukai,et al.  Theoretical analysis and fabrication of antireflection coatings on laser-diode facets , 1985 .

[41]  Yoshihisa Yamamoto,et al.  Coherent optical fiber transmission systems , 1981 .

[42]  Dietrich Marcuse,et al.  Reflection loss of laser mode from tilted end mirror , 1989 .

[43]  T. Cella,et al.  1.3 mu m semiconductor laser power amplifier , 1989, IEEE Photonics Technology Letters.

[44]  Takaaki Mukai,et al.  S/N and Error Rate Performance in AlGaAs Semiconductor Laser Preamplifier and Linear Repeater Systems , 1982 .