p-FEM applied to finite isotropic hyperelastic bodies

In this article the p-version finite element method is applied to finite strain problems. In particular, the behaviour of high order finite elements is studied for an isotropic hyperelastic material in the case of near incompressibility. The question of robustness with respect to distortion and efficiency of anisotropic p-version elements for thin-walled or beam-like structures will be addressed. It will be shown that the p-version finite element approach is a promising method to compute geometrically highly non-linear structures.

[1]  Stefan Hartmann,et al.  Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions , 2001 .

[2]  S. Hartmann Computation in finite-strain viscoelasticity: finite elements based on the interpretation as differential–algebraic equations , 2002 .

[3]  D. W. Saunders,et al.  Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  Ernst Rank,et al.  The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity , 2001 .

[5]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  E. Stein,et al.  On some mixed finite element methods for incompressible and nearly incompressible finite elasticity , 1996 .

[7]  K. Bathe,et al.  A finite element formulation for nonlinear incompressible elastic and inelastic analysis , 1987 .

[8]  Stefan Hartmann,et al.  Numerical studies on the identification of the material parameters of Rivlin's hyperelasticity using tension-torsion tests , 2001 .

[9]  J. Z. Zhu,et al.  The finite element method , 1977 .

[10]  M. Boyce,et al.  A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials , 1993 .

[11]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[12]  Stefan Hartmann,et al.  Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility , 2003 .

[13]  Patrick Laborde,et al.  An existence theorem for slightly compressible materials in nonlinear elasticity , 1988 .

[14]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[15]  Ernst Rank,et al.  The p‐version of the finite element method for three‐dimensional curved thin walled structures , 2001 .

[16]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[17]  W. Ehlers,et al.  The simple tension problem at large volumetric strains computed from finite hyperelastic material laws , 1998 .

[18]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[19]  H. Broeker,et al.  Integration von geometrischer Modellierung und Berechnung nach der p-Version der FEM , 1999 .

[20]  P. Haupt,et al.  Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling , 2001 .

[21]  E. Ramm,et al.  Error-controlled Adaptive Finite Elements in Solid Mechanics , 2001 .

[22]  Ernst Rank,et al.  A p‐version finite element approach for two‐ and three‐dimensional problems of the J2 flow theory with non‐linear isotropic hardening , 2002 .

[23]  Ernst Rank,et al.  On the accuracy of p-version elements for the Reissner-Mindlin plate problem , 1998 .

[24]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[25]  Ernst Rank,et al.  A Numerical Investigation of High-Order Finite Elements for Problems of Elastoplasticity , 2002, J. Sci. Comput..

[26]  Robert Eberlein Finite-Elemente-Konzepte für Schalen mit großen elastischen und plastischen Verzerrungen , 1997 .

[27]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[28]  Stefanie Reese,et al.  A new stabilization technique for finite elements in non-linear elasticity , 1999 .

[29]  Computational modelling of rubberlike materials , 1991 .

[30]  Manil Suri,et al.  Analytical and computational assessment of locking in the hp finite element method , 1996 .

[31]  Barna A. Szabó,et al.  Quasi-regional mapping for the p-version of the finite element method , 1997 .

[32]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[33]  Peter Wriggers,et al.  A stabilization technique to avoid hourglassing in finite elasticity , 2000 .

[34]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[35]  Herbert A. Mang,et al.  3D finite element analysis of rubber‐like materials at finite strains , 1994 .

[36]  Thermo-elastic computations of geometrically non-linear three-dimensional thin-walled continua based on high order finite elements , 2002 .

[37]  K. Bathe Finite-Elemente-Methoden , 1986 .

[38]  P. Flory,et al.  Thermodynamic relations for high elastic materials , 1961 .

[39]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[40]  Robert L. Taylor,et al.  Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .