A finite volume study for pressure waves propagation in a straight section of pipeline with caviation

The main objective of this research was to study the pressure waves propagation generated by a sudden closure of a valve in a straight pipe. The physical model consisted of a head tank that can be pressurized with air, and a copper pipe with a fast-closing ball valve on the downstream end of the line. The cavitation and fluid-structure interaction phenomena were integrated analytically into the one-dimensional continuity and momentum equations, by assuming that the fluid density and the flow area vary with pressure. These equations were solved through a high resolution finite volume method, in combination with others numerical methods such as Taylor series expansion, Newton method, Simpson's Rule and quadratic interpolation. Due to the complexity of the solution procedure, a computational code in FORTRAN 95 language was developed in order to obtain numerical solutions. Several discretizations of the computational grid were achieved to assess their impact on the solution. The model was validated with experimental data and analytic results obtained by other researchers. Several pressure values, in different points of pipe, were compared, and an excellent agreement was found for both cases.