Efficient and magnetically recoverable "click" PEGylated γ-Fe2O3-Pd nanoparticle catalysts for Suzuki-Miyaura, Sonogashira, and Heck reactions with positive dendritic effects.

The engineering of novel catalytic nanomaterials that are highly active for crucial carbon-carbon bond formations, easily recoverable many times, and biocompatible is highly desirable in terms of sustainable and green chemistry. To this end, catalysts comprising dendritic "click" ligands that are immobilized on a magnetic nanoparticle (MNP) core, terminated by triethylene glycol (TEG) groups, and incorporate Pd nanoparticles (PdNPs) have been prepared. These nanomaterials are characterized by transmission electron microscopy (TEM), high-resolution TEM, inductively coupled plasma analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and energy-dispersive X-ray spectroscopy. They are shown to be highly active, dispersible, and magnetically recoverable many times in Suzuki, Sonogashira, and Heck reactions. In addition, a series of pharmacologically relevant or natural products were successfully synthesized using these magnetic PdNPs as catalyst. For comparison, related PdNP catalysts deposited on MNPs bearing linear "click" PEGylated ligands are also prepared. Strong positive dendritic effects concerning ligand loading, catalyst loading, catalytic activity, and recyclability are observed, that is, the dendritic catalysts are much more efficient than non-dendritic analogues.

[1]  Lajos P. Balogh,et al.  Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters , 1998 .

[2]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .

[3]  C. Hawker,et al.  Synthesis and Catalytic Activity of Unimolecular Dendritic Reverse Micelles with “Internal” Functional Groups , 1999 .

[4]  L. Bronstein,et al.  Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. , 2011, Chemical reviews.

[5]  Marta Sowinska,et al.  Advances in the chemistry of dendrimers , 2014 .

[6]  S. Shylesh,et al.  Palladium(II)‐Phosphine Complexes Supported on Magnetic Nanoparticles: Filtration‐Free, Recyclable Catalysts for Suzuki–Miyaura Cross‐Coupling Reactions , 2010 .

[7]  Rongzheng Liu,et al.  Magnetic Nanocomposites: A New Perspective in Catalysis , 2010 .

[8]  R. Crooks,et al.  Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles. , 1999, Angewandte Chemie.

[9]  D. Astruc,et al.  'Click' synthesis and redox properties of triazolyl cobalticinium dendrimers. , 2013, Inorganic chemistry.

[10]  M. Higuchi,et al.  First synthesis of phenylazomethine dendrimer ligands and structural studies. , 2001, Journal of the American Chemical Society.

[11]  D. Astruc,et al.  “Click” Dendrimer‐Stabilized Palladium Nanoparticles as a Green Catalyst Down to Parts per Million for Efficient CC Cross‐Coupling Reactions and Reduction of 4‐Nitrophenol , 2014 .

[12]  Emily V. Carino,et al.  Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications , 2011 .

[13]  Haiyang Sun,et al.  Palladium nanoparticles supported on functional ionic liquid modified magnetic nanoparticles as recyclable catalyst for room temperature Suzuki reaction , 2013 .

[14]  G. Newkome Suprasupermolecular chemistry: the chemistry within the dendrimer , 1998 .

[15]  Á. Molnár Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions. , 2011, Chemical reviews.

[16]  Kimihisa Yamamoto,et al.  Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. , 2008, Nature nanotechnology.

[17]  D. Astruc,et al.  Dendritic catalysts and dendrimers in catalysis. , 2001, Chemical reviews.

[18]  M. Toprak,et al.  Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles , 2010 .

[19]  Min Han,et al.  A facile preparation of palladium nanoparticles supported on magnetite/s-graphene and their catalytic application in Suzuki–Miyaura reaction , 2012 .

[20]  M. Delville,et al.  Organometallic Molecular Trees as Multielectron and Multiproton Reservoirs: CpFe+‐Induced Nonaallylation of Mesitylene and Phase‐Transfer Catalyzed Synthesis of a Redox‐Active Nonairon Complex , 1993 .

[21]  M. Higuchi,et al.  Stepwise radial complexation of imine groups in phenylazomethine dendrimers , 2002, Nature.

[22]  D. Astruc,et al.  Palladium–dodecanethiolate nanoparticles as stable and recyclable catalysts for the Suzuki–Miyaura reaction of aryl halides under ambient conditions , 2004 .

[23]  Richard M. Crooks,et al.  Preparation of Cu Nanoclusters within Dendrimer Templates , 1998 .

[24]  Maiyong Zhu,et al.  Magnetically Recyclable Pd Nanoparticles Immobilized on Magnetic Fe3O4@C Nanocomposites: Preparation, Characterization, and Their Catalytic Activity toward Suzuki and Heck Coupling Reactions , 2011 .

[25]  L. Rossi,et al.  A single-step procedure for the preparation of palladium nanoparticles and a phosphine-functionalized support as catalyst for Suzuki cross-coupling reactions , 2010 .

[26]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[27]  S. Shylesh,et al.  Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. , 2010, Angewandte Chemie.

[28]  W. Li,et al.  Preparation and characterization of novel immobilized Fe3O4@SiO2@mSiO2–Pd(0) catalyst with large pore-size mesoporous for Suzuki coupling reaction , 2013 .

[29]  W. Stark,et al.  Combined Covalent and Noncovalent Functionalization of Nanomagnetic Carbon Surfaces with Dendrimers and BODIPY Fluorescent Dye , 2011 .

[30]  G. Ungar,et al.  Rational Design of the First Spherical Supramolecular Dendrimers Self-Organized in a Novel Thermotropic Cubic Liquid-Crystalline Phase and the Determination of Their Shape by X-Ray-Analysis , 1997 .

[31]  Amália Monge-Marcet,et al.  Sol-gel immobilized aryl iodides for the catalytic oxidative α-tosyloxylation of ketones , 2013 .

[32]  Jean M. J. Fréchet,et al.  The Dendrimer Effect in Homogeneous Catalysis , 2006 .

[33]  D. Astruc,et al.  Tentacled Iron Sandwiches , 1988 .

[34]  Sankaranarayanapillai Shylesh,et al.  Magnetisch abtrennbare Nanokatalysatoren: Brücken zwischen homogener und heterogener Katalyse , 2010 .

[35]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[36]  Sanjay K. Sharma,et al.  Green chemistry for environmental sustainability , 2010 .

[37]  D. Astruc,et al.  Recyclable catalytic dendrimer nanoreactor for part-per-million Cu(I) catalysis of "click" chemistry in water. , 2014, Journal of the American Chemical Society.

[38]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[39]  D. A. Tomalia,et al.  Starburst‐Dendrimere: Kontrolle von Größe, Gestalt, Oberflächenchemie, Topologie und Flexibilität beim Übergang von Atomen zu makroskopischer Materie , 1990 .

[40]  Wenli Zhang,et al.  Magnetic nanoparticle supported catalytic Cu(II)–poly(amindoamine) complexes for aerobic oxidative polymerization to form poly(2,6-dimethyl-1,4-phenylene oxide) in water , 2012 .

[41]  M. Murata,et al.  Supramolecular catalysts by encapsulating palladium complexes within dendrimers. , 2004, Journal of the American Chemical Society.

[42]  Avelino Corma,et al.  Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions , 1995 .

[43]  D. Astruc,et al.  Magnetically Recoverable Ruthenium Catalysts in Organic Synthesis , 2014, Molecules.

[44]  Orla M. Wilson,et al.  Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors. , 2005, Journal of the American Chemical Society.

[45]  Oliver Reiser,et al.  Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. , 2014, Accounts of chemical research.

[46]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[47]  Jean M. J. Fréchet,et al.  Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology , 2003 .

[48]  Richard M Crooks,et al.  Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. , 2005, Journal of the American Chemical Society.

[49]  Richard M Crooks,et al.  Bimetallic palladium-gold dendrimer-encapsulated catalysts. , 2004, Journal of the American Chemical Society.

[50]  G. Newkome,et al.  Suprasupermolecules with Novel Properties: Metallodendrimers. , 1999, Chemical reviews.

[51]  A. Pourjavadi,et al.  Magnetic nanoparticles coated by acidic functionalized poly(amidoamine) dendrimer: Effective acidic organocatalyst , 2012 .

[52]  W. Stark,et al.  Immobilization on a Nanomagnetic Co/C Surface Using ROM Polymerization: Generation of a Hybrid Material as Support for a Recyclable Palladium Catalyst , 2010, Advanced functional materials.

[53]  George R. Newkome,et al.  MICELLES. PART 1. CASCADE MOLECULES: A NEW APPROACH TO MICELLES. A (27)-ARBOROL , 1985 .

[54]  Rafael Luque,et al.  Magnetically recoverable nanocatalysts. , 2011, Chemical reviews.

[55]  D. Astruc,et al.  "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions. , 2014, Accounts of chemical research.

[56]  D. Egan,et al.  The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. , 1990, Drug metabolism reviews.

[57]  A. Datye,et al.  Bimetallic palladium-platinum dendrimer-encapsulated catalysts. , 2003, Journal of the American Chemical Society.

[58]  J. C. Flores,et al.  Dendrimers: Solutions For Catalyst Separation and Recycling–A Review† † Dedicated to the memory of Dr. José Antonio Delgado Oyagüe. , 2008 .

[59]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[60]  Avelino Corma,et al.  From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. , 1997, Chemical reviews.

[61]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[62]  E. W. Meijer,et al.  About Dendrimers: Structure, Physical Properties, and Applications. , 1999, Chemical reviews.

[63]  F. S. Kamounah,et al.  Heck Reactions Catalyzed by PAMAM-Dendrimer Encapsulated Pd(0) Nanoparticles , 2001 .

[64]  D. Astruc,et al.  Dendritic catalysis—Basic concepts and recent trends , 2013 .

[65]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[66]  D. Astruc,et al.  Click syntheses of 1,2,3-triazolylbiferrocenyl dendrimers and the selective roles of the inner and outer ferrocenyl groups in the redox recognition of ATP2- and Pd2+. , 2010, Angewandte Chemie.

[67]  M. Higuchi,et al.  Novel triarylamine dendrimers as a hole-transport material with a controlled metal-assembling function. , 2003, Journal of the American Chemical Society.

[68]  D. Astruc,et al.  Tentakel‐Sandwichkomplexe des Eisens , 1988 .

[69]  D. Astruc,et al.  Fast-growing field of magnetically recyclable nanocatalysts. , 2014, Chemical reviews.

[70]  I. Beletskaya,et al.  The heck reaction as a sharpening stone of palladium catalysis. , 2000, Chemical reviews.

[71]  D. Astruc Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. , 2012, Nature chemistry.

[72]  W. Thiel,et al.  Metallorganische molekulare Bäume als Mehrelektronen‐ und Mehrprotonenspeicher: CpFe+‐induzierte Nonaallylierung von Mesitylen und phasentransferkatalysierte Synthese eines redoxaktiven Nonaeisenkomplexes , 1993 .

[73]  H. Alper,et al.  Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. , 2006, Journal of the American Chemical Society.

[74]  F. Schüth,et al.  Magnetische Nanopartikel: Synthese, Stabilisierung, Funktionalisierung und Anwendung , 2007 .

[75]  D. Astruc,et al.  Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse , 2005 .

[76]  M. R. Imam,et al.  Hollow spherical supramolecular dendrimers. , 2008, Journal of the American Chemical Society.

[77]  Michel Keller,et al.  Organocatalysis with dendrimers. , 2012, Chemical Society reviews.

[78]  M. Liu,et al.  Implantation of nanomaterials and nanostructures on surface and their applications , 2012 .

[79]  V. Percec,et al.  Fluorophobic Effect Induces the Self-Assembly of Semifluorinated Tapered Monodendrons Containing Crown Ethers into Supramolecular Columnar Dendrimers Which Exhibit a Homeotropic Hexagonal Columnar Liquid Crystalline Phase , 1996 .

[80]  Hao Shen,et al.  Single-molecule fluorescence imaging of nanocatalytic processes. , 2010, Chemical Society reviews.

[81]  M. Rossell,et al.  A General Approach To Fabricate Fe3O4 Nanoparticles Decorated with Pd, Au, and Rh: Magnetically Recoverable and Reusable Catalysts for Suzuki C-C Cross-Coupling Reactions, Hydrogenation, and Sequential Reactions. , 2013, Chemistry.

[82]  George R. Newkome,et al.  Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol , 1985 .

[83]  É. Boisselier,et al.  Encapsulation and stabilization of gold nanoparticles with "click" polyethyleneglycol dendrimers. , 2010, Journal of the American Chemical Society.

[84]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[85]  C. Hawker,et al.  Effects of Polymer Architecture and Nanoenvironment in Acylation Reactions Employing Dendritic (Dialkylamino)pyridine Catalysts , 2005 .

[86]  R. Crooks,et al.  Heck Heterocoupling within a Dendritic Nanoreactor , 2001 .

[87]  Amy S. H. King,et al.  Catalysis inside dendrimers. , 2002, Chemical Society reviews.

[88]  Mingqi Zhao,et al.  Homogene katalytische Hydrierung mit monodispersen, dendrimerumhüllten Pd‐ und Pt‐Nanopartikeln , 1999 .

[89]  Masatake Haruta,et al.  Advances in the catalysis of Au nanoparticles , 2001 .

[90]  D. Morgan,et al.  Polyphenylenepyridyl Dendrons with Functional Periphery and Focal Points: Syntheses and Applications , 2013 .

[91]  E. W. Meijer,et al.  Poly(propylenimin)‐Dendrimere: Synthese in größerem Maßstab durch heterogen katalysierte Hydrierungen , 1993 .

[92]  A review of the kinetics and mechanisms of formation of supported-nanoparticle heterogeneous catalysts , 2012 .

[93]  É. Cloutet,et al.  Click assembly of 1,2,3-triazole-linked dendrimers, including ferrocenyl dendrimers, which sense both oxo anions and metal cations. , 2007, Angewandte Chemie.

[94]  É. Boisselier,et al.  Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. , 2010, Chemical reviews.

[95]  Jun Luo,et al.  “Click” magnetic nanoparticle-supported palladium catalyst: a phosphine-free, highly efficient and magnetically recoverable catalyst for Suzuki–Miyaura coupling reactions , 2013 .

[96]  E. W. Meijer,et al.  Poly(propylene imine) Dendrimers: Large‐Scale Synthesis by Hetereogeneously Catalyzed Hydrogenations , 1993 .

[97]  D. Kordestani,et al.  Biguanide/Pd(OAc)2 immobilized on magnetic nanoparticle as a recyclable catalyst for the heterogeneous Suzuki reaction in aqueous media , 2013 .

[98]  Paul C J Kamer,et al.  Dendrimers as support for recoverable catalysts and reagents. , 2002, Chemical reviews.

[99]  G. Newkome,et al.  Dendrimers derived from 1 → 3 branching motifs. , 2010, Chemical reviews.

[100]  H. Lien,et al.  Dendrimer-conjugated magnetic nanoparticles for removal of zinc (II) from aqueous solutions , 2011 .