Oscillation characteristics in InGaAsP/InP DH lasers with self-aligned structure

This paper presents new stripe geometry InGaAsP/InP DH lasers having mechanisms for suppressing current spreads and for controlling the transverse mode parallel to the junction plane. The theoretical study for optimum design of these lasers from which the analytic method of oscillation characteristics, including control of the transverse mode parallel to the junction plane attributable to refractive index and gain, was derived is discussed. The oscillation characteristics, especially the waveguide properties of the transverse mode are reported. Experimental results show excellent agreement with the theory and show that the transverse mode is totally confined by the built-in passive waveguide for a stripe width of 5 μm.

[1]  M. Takusagawa,et al.  Self‐aligned structure InGaAsP/InP DH lasers , 1979 .

[2]  M. Takusagawa,et al.  Theoretical and experimental study of threshold characteristics in InGaAsP/InP DH lasers , 1979 .

[3]  R. Nahory,et al.  Threshold dependence on active-layer thickness in InGaAsP/InP d.h. lasers , 1978 .

[4]  P. Asbeck,et al.  Non‐Gaussian fundamental mode patterns in narrow‐stripe‐geometry lasers , 1978 .

[5]  M. Saruwatari,et al.  Low loss fibre transmission of high speed pulse signals at 1.29 μm wavelength , 1978 .

[6]  Won-Tien Tsang,et al.  The effects of lateral current spreading, carrier out‐diffusion, and optical mode losses on the threshold current density of GaAs‐AlχGa1−χAs stripe‐geometry DH lasers , 1978 .

[7]  Naoki Chinone,et al.  Transverse mode stabilized Al x Ga 1-x As injection lasers with channeled-substrate-planar structure , 1978 .

[8]  Paul Anthony Kirkby,et al.  Observations of self-focusing in stripe geometry semiconductor lasers and the development of a comprehensive model of their operation , 1977 .

[9]  T. Paoli,et al.  Waveguiding in a stripe-geometry junction laser , 1977, IEEE Journal of Quantum Electronics.

[10]  S. Akiba,et al.  Measurement of spontaneous-emission factor of AlGaAs double-heterostructure semiconductor lasers , 1977 .

[11]  Naoki Chinone,et al.  Nonlinearity in power‐output–current characteristics of stripe‐geometry injection lasers , 1977 .

[12]  R. Lang,et al.  Unstable horizontal transverse modes and their stabilization with a new stripe structure , 1977 .

[13]  H. Kawaguchi,et al.  Lasing Characteristics of Very Narrow Planar Stripe Lasers , 1977 .

[14]  Joseph P. Donnelly,et al.  Room-Temperature Operation of GaInAsp/Inp Double-Heterostructure Diode Lasers Emitting at 1.1 µm* , 1976, Integrated Optics.

[15]  M. Horiguchi,et al.  Spectral losses of low-OH-content optical fibres , 1976 .

[16]  Donald R. Scifres,et al.  Substrate radiation losses in GaAs heterostructure lasers , 1976 .

[17]  D. Payne,et al.  Zero material dispersion in optical fibres , 1975 .

[18]  F. Nash,et al.  Gain−induced guiding and astigmatic output beam of GaAs lasers , 1975 .

[19]  H. C. Casey,et al.  Beam divergence of the emission from double-heterostructure injection lasers , 1973 .

[20]  H. Ishikawa,et al.  An internally striped planar laser with 3-µm stripe width oscillating in transverse single mode , 1973 .

[21]  F. R. Nash,et al.  Mode guidance parallel to the junction plane of double-heterostructure GaAs lasers , 1973 .

[22]  E. A. J. Marcatili,et al.  Dielectric rectangular waveguide and directional coupler for integrated optics , 1969 .

[23]  B. Hakki GaAs double heterostructure lasing behavior along the junction plane , 1975 .